following a man do or efect to de Will of several defer to a as much of or matter for seco of the med of 110 If endly or character of P. 156851 ## ELEMENTARY 1906 # TRIGONOMETRY ВΥ #### H. S. HALL, M.A., FORMERLY SCHOLAR OF CHRIST'S COLLEGE, CAMBRIDGE. AND S. R. KNIGHT, B.A., M.B., Ch.B., formerly scholar of trinity college, cambridge. FOURTH EDITION, REVISED AND ENLARGED. #### London MACMILLAN AND CO., LIMITED NEW YORK: THE MACMILLAN COMPANY 1906 All rights reserved. First Edition, 1893. Second Edition, 1895, 1896, 1897. Third Edition, 1898, 1899, 1901, 1902, 1904. Fourth Edition, revised and enlarged, 1905 Reprinted 1906 ### PREFACE. | Тне | distinctive features of the Fourth Edition at | e: | |-----|--|-----------------| | (1) | Practical Exercises in constructing angles with given ratios, and in finding the | PAGE | | | trigonometrical ratios of given angles. | 7_{Λ} | | (2) | The Use of Four-Figure Tables of sines, | | | | cosines, and tangents | 29_{Λ} | | (3) | Easy Problems requiring Four-Figure | | | | Tables | $48_{\rm A}$ | | (4) | Graphs of the Trigonometrical Functions | 79_{Λ} | | (5) | A set of Easy Miscellaneous Examples on | | | | Chapters xi and xii | 122_{Λ} | | (6) | The Use of Four-Figure Logarithms and | | | | Antilogarithms | 163_{Λ} | | (7) | Solution of triangles with Four-Figure | | | | Logarithms | $183_{\rm A}$ | | (8) | Four-Figure Tables of Logarithms, Anti- | | | | logarithms, Natural and Logarithmic | | | | Ennotions | 374 | The Tables of Logarithms and Antilogarithms have been taken, with slight modifications, from those published by the Board of Education, South Kensington. The Four-Figure Tables of Natural and Logarithmic Functions have been reduced from Seven-Figure Tables. For these I am greatly indebted to Mr Frank Castle, who kindly undertook the laborious task of a special compilation for this book. (9) An easy first course has been mapped out enabling teachers to postpone, if they wish, all but the easier kinds of identities and transformations, so as to reach the more practical parts of the subject as early as possible. All the special features of earlier editions have been retained, and it is hoped that the present additions will satisfy all modern requirements. H. S. HALL. August 1905. #### SUGGESTIONS FOR A FIRST COURSE. In the first eighteen chapters an asterisk has been placed before all articles and sets of examples which may conveniently be omitted from a first course. For those who wish to postpone the harder identities and transformations, so as to reach practical work with Four-Figure Logarithms at an earlier stage, the following detailed course is recommended. Chaps. I—III, Arts. 1—30, 32, 33. [Omit Art. 31, Examples III. b.] Chaps. IV—IX. [Postpone Chaps. XI and XII.] Chaps. xIII—xv, Arts. 137—170, 182_A—182_F. [Omit Seven-Figure Tables, Arts. 171—182.] Chaps, xi, xii. [Omit Arts, 127, 136, Examples xi, f, and xii, e.] Chap. xvi, Arts. 183—187, 197_A—197_D. [Omit Solutions with Seven-Figure Tables, Arts. 188—197.] Chaps. xvIII, XVIII, Arts. 198—218. From this point the omitted sections must be taken at the discretion of the Teacher. Digitized by the Internet Archive in 2010 with funding from University of British Columbia Library ## CONTENTS. | Chapter I. MEASUREMENT OF ANGLES. | Page | |--|------| | Definition of Angle | 1 | | Sexagesimal and Centesimal Measures | 2 | | Formula $\frac{D}{9} = \frac{G}{10}$ | | | Formula $\frac{1}{9} = \frac{1}{10}$. | E | | Chapter II. TRIGONOMETRICAL RATIOS. | | | Definitions of Ratio and Commensurable Quantities | | | Definitions of the Trigonometrical Ratios | 6 | | Sine and cosine are less than unity, secant and cosecant are | | | greater than unity, tangent and cotangent are unrestricted. | | | The trigonometrical ratios are independent of the lengths of | | | the lines which include the angle | | | Definition of function | 10 | | Chapter III. RELATIONS BETWEEN THE RATIOS. | | | The reciprocal relations | | | Tangent and cotangent in terms of sine and cosine | 13 | | Sine-cosine, tangent-secant, cotangent-cosecant formulæ | 14 | | Easy Identities | | | Each ratio can be expressed in terms of any of the others . | 21 | | Chapter IV. TRIGONOMETRICAL RATIOS OF CERTAIN ANGI | LES. | | Trigonometrical Ratios of 45°, 60°, 30° | 24 | | Definition of complementary angles | 27 | | The Use of Tables of Natural Functions | 29A | | Easy Trigonometrical Equations | | | Miscellaneous Examples. A | . 32 | | Chapter V. SOLUTION OF RIGHT-ANGLED TRIANGLES. | | |---|--------| | Case I. When two sides are given | PAGI | | Case II. When one side and one acute angle are given . | | | Case of triangle considered as sum or difference of two ri | | | angled triangles | 0 | | angled mangles | . 0 | | Chapter VI. EASY PROBLEMS. | | | Angles of Elevation and Depression | . 4 | | The Mariner's Compass | | | | | | Chapter VII. RADIAN OR CIRCULAR MEASURE. | | | Definition of Radian | . 4 | | Circumference of circle $= 2\pi$ (radius) | . 5 | | All radians are equal | . 5 | | π radians=2 right angles=180 degrees | . 5 | | Radian contains 57.2958 degrees | . 5 | | Formula $\frac{D}{180} = \frac{\theta}{\pi}$ | . 5 | | Values of the functions of $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{6}$ | . 5 | | Ratios of the complementary angle $\frac{\pi}{2}$ – θ | . 5 | | Radian measure of angles of a regular polygon | . 5 | | Postion married subtending arc | . 5 | | $\label{eq:Radian measure of an angle} \begin{aligned} & = \frac{\text{subtending arc}}{\text{radius}} & . & . & . \end{aligned}$ | . 0 | | Radian and Circular Measures are equivalent | . 5 | | Miscellaneous Examples. B | . 6 | | | | | Chapter VIII. RATIOS OF ANGLES OF ANY MAGNITUR | Œ. | | Convention of Signs (1) for line, (2) for plane surface, (3) | 3) for | | | * | | angles | . 6 | | Signs of the trigonometrical ratios in the four quadrants . | . 6 | | Definition of Coterminal Angles | . 6 | | The fundamental formula of Chap, in, are true for all vi | | | of the angle | | | The ambiguity of sign in $\cos A = \pm \sqrt{1 - \sin^2 A}$ can be remarkable. | oved | | when d is known. | | | Chapter IX. | VARIATIO | ONS O | F TH | E FU | JNCT | ONS. | | | | | |---|-----------------------|--------------|-----------|-------|-------|---------|-------|------|------|----------------| | _ | | | | | | | | | | PAGE | | Definition of <i>lin</i>
Functions of 0° | iit . | | | | • | • | • | • | ٠ | | | Functions of 0° | and 90° | ٠ | | | ٠. | • | • | • | • | 74 | | Changes in the | sign and r | nagni | tude | of si | n A | • | | • | • | 76 | | Changes in the | sign and r | nagni | tude | of ta | u A | ٠ | | | • | 78 | | Definition of Ci | rcular Fu | nction | ıs | | | | ٠ | | | 79 | | Graphs of the F | unctions | ٠ | | | | • | • | • | | 79_{Λ} | | Miscellaneous E | xamples. | С. | • | | ٠ | | ٠ | ٠ | • | 81 | | Chapter X. | CIRCULAR | FUN | CTIO: | s o | F AL | LIED | ANGI | ES. | | | | Circular functio | ns of 180 | ° – A | | | | | | | | 82 | | Definition of su | pplement | arv ar | igles | | | | | 1 | | 83 | | Circular function | ${ m ns}~{ m of}~180$ | $^{\circ}+A$ | | | | | | | | 84 | | Circular function | ns of 90° | +A | | | | | | | | 85 | | Circular function | ns of -A | | | | | | | | | 86 | | Definition of ev | | | | | | | | | | 87 | | Circular function | | | | | | | | | | 88 | | Circular function | | | | | | | | | | 89 | | The functions of | | | | | | | | | nc- | | | tions of so | me acute | angle | | | | | | | | 90 | | The number of | of angles | whiel | h ha | ve th | e sa | me tr | igono | metr | ical | | | ratio is un | limited | | | | | | | | | 91 | | 14,000 15 111 | | · | | | | | | | | | | Chapter XI. | | | | | | | | | | | | Expansions of | the sine a | and co | sine | of .4 | +B a | and A | -B | | | 94 | | $\sin(A+B)\sin(a+B)$ | (A - B) = s | $\sin^2 A$. | $-\sin^2$ | B. | | | | | | 96 | | Exponsions of | $tan (4 \pm E)$ | 3) and | cot (| A + B | 3) . | | | | | 98 | | Expansions of | $\sin(A+I)$ | (C) | and t | an (A | +B | +C | | | | 95 | | Converse use o | f the Add | ition [| Form | ulæ | | | | | | 100 | | Functions of 2 | | | | | | | | | | | | Functions of a | | | | | | | | | | 105 | | Value of sin 18 | | | | | | | | | | 100 | | Chapter XII | TRANS | SFORM | ATIO | N OF | PRO | DUCT | S AN | D SU | IMS. | | | Transformatio | | | | | | | | | | | | Transformatio Transformatio | n of sume | or di | fferen | ces i | nto r | roduc | ts. | | | . 11: | | Relations when | n or sums | C-18 | 0° . | | P | | | | | . 11 | | relations when | ATDT | - IC | | | | | | | | | # Chapter XIII. RELATIONS BETWEEN THE SIDES AND ANGLES OF A TRIANGLE. | · · | | | |--|----|------------------| | $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} . \qquad . \qquad . \qquad .$ | | 123 | | $b^2 + c^2 - a^2$ | | | | $a^2 = b^2 + c^2 - 2bc \cos A$, and $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ | ٠ | 124 | | $a=b\cos C+c\cos B$ | | 124 | | The above sets of formulæ are not independent | | 125 | | Solution of Triangles without logarithms | | 126 | | Case I. When the three sides are given | | 126 | | Case II. When two sides and the included angle are given | | 127 | | Case III. When two angles and a side are given | | 128 | | Case IV. When two sides and an angle opposite to one | of | | | them are given. Sometimes this case is ambiguous. | | 130 | | The Ambiguous Case discussed geometrically | 4 | 131 | | The Ambiguous Case discussed by first finding the third side | | 135 | | Miscellaneous Examples. D | ٠ | 138 | | | | | | Chapter XIV.
LOGARITHMS. | | | | Oliopeol 222 V Doollittiinio. | | | | $a^x = N$ and $x = \log_a N$ are equivalent | | 139 | | $a^{\log_a N} = N$ is identically true | | 139 | | Logarithm of a product, quotient, power, root | | 140 | | The characteristic of a common logarithm may be written do | wn | | | by inspection | | 142 | | The logarithms of all numbers which have the same significa | | | | digits have the same mautissa | | 143 | | 1 | | 7.40 | | $\log_b N = \frac{1}{\log_a b} \times \log_a N, \text{ and } \log_b a \times \log_a b = 1 \qquad . \qquad .$ | ٠ | 146 | | Exponential Equations | | 148 | | Miscellancous Examples. E | | 150 | | | | | | | | | | Chapter XV. THE USE OF LOGARITHMIC TABLES. | | | | Rule of Proportional Parts | | 152 | | Use of Tables of Common Logarithms | | | | Use of Tables of Natural and Logarithmic Functions . | | 156 | | Use of Four-Figure Tables | | 163 _A | CONTENTS. xiii | Chapter XVI. SOLUTION OF TRIANGLES WITH LOGARITHMS. | |--| | PAGE | | Functions of the half-angles in terms of the sides 16- | | Sin A in terms of the sides | | Solution when the three sides are given | | Solution when two sides and the included angle are given 170 | | Solution when two angles and a side are given 17- | | Solution when two sides and the angle opposite to one of them | | are given | | Adaptation of $a^2 + b^2$ to logarithmic work | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | Solution of triangles with Four-Figure logarithms 183 | | Chapter XVII. HEIGHTS AND DISTANCES. | | Measurements in one plane | | Problems dependent on Geometry | | Measurements in more than one plane | | Problems requiring Four-Figure Tables | | 1 | | Chapter XVIII. PROPERTIES OF TRIANGLES AND POLYGONS. | | Area of a triangle | | Radius of the circum-circle of a triangle | | Radius of the in-circle of a triangle | | Radii of the ex-circles of a triangle | | some important relations established by Geometry 204 | | Inscribed and circumscribed polygons | | Area of a circle and sector of a circle | | The Ex-central Triangle | | The Pedal Triangle | | Distances of in-centre and ex-centres from circum-centre | | Distance of orthocentre from circum-centre | | Area of any quadrilateral | | Diagonals and circum-radius of a cyclic quadrilateral | | Miscellaneous Examples. F | | and the second state of the second se | | Chapter XIX. GENERAL VALUES AND INVERSE FUNCTIONS. | | Formula for all angles which have a given sine | | Formula for all angles which have a given cosine | | | | | | | | PAUL | |--|------------------|-------|-----------------|---|---|------| | Formula for all angles which have a given | tang | ent | | | | 234 | | Formula for angles both equi-sinal and equ | i-co: | sinal | | | | 234 | | General solution of equations | | | | | | 236 | | Inverse Circular Functions | | | | | | 238 | | Solution of equations expressed in inverse | nota | tion | | | | 244 | | Miscellaneous Examples, G | | | | | | 246 | | | | | | | | | | Chapter XX. Functions of submult | TPLE | AN | GLES. | | | | | Trigonometrical Ratios of $\frac{\pi}{8}$ | | | • | 0 | | 247 | | Given $\cos A$ to find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$. | | | | | • | 248 | | To express $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ in terms of $\sin A$ | A | | | | | 250 | | Variation in sign and magnitude of $\cos \theta - \sin \theta$ | $\sin \theta$ | | | | | 254 | | Variation in sign and magnitude of $\cos \theta - \sin \theta$. Sine and cosine of 9° . | | | | | | 254 | | To find $\tan \frac{A}{2}$ when $\tan A$ is given | | | | | | | | Given a function of A to find the functions | of $\frac{2}{5}$ | 4 2 | | | | 258 | | Given $\cos A$ to find $\cos \frac{A}{3}$ | | | | • | | 259 | | Chapter XXI. LIMITS AND APPROXIMA | А ТТО | NS. | | | | | | | | | | | | | | If $\theta < \frac{\pi}{2}$, $\sin \theta$, θ , $\tan \theta$ are in ascending order. | | | | | | 261 | | When $\theta = 0$, $\frac{\sin \theta}{\theta} = 1$, and $\frac{\tan \theta}{\theta} = 1$. | • | | | | | 262 | | $\cos \theta > 1 - \frac{\theta^2}{2}$, and $\sin \theta > \theta - \frac{\theta^3}{4}$. | | | | | | 265 | | Value of sin 10" | | | | | | 266 | | Value of $\sin 10''$ $\cos \frac{\theta}{2} \cos \frac{\theta}{4} \cos \frac{\theta}{8} \cos \frac{\theta}{16} \dots = \frac{\sin \theta}{\theta}$ | | | | | | 266 | | $\frac{\sin \theta}{\theta}$ decreases from 1 to $\frac{2}{\pi}$ as θ increases from | rom | 0 to | $\frac{\pi}{2}$ | | | 267 | | Distance and Dip of the Visible Horizon . | | | | | | | xv | Chapter XXII. GEOMETRICAL PROOFS. | | | PAG | 77 | |---|------|------|------|----| | Expansion of $tan(A+B)$ | | | . 27 | | | Formulæ for transformation of sums into products | | | . 27 | | | Proof of the 2A formulæ | | | . 27 | | | Value of sin 18° | | | . 27 | 7 | | Proofs by Projection | | | . 27 | 8 | | General analytical proof of the Addition Formula | | | . 28 | 2 | | Miscellaneous Examples. II | | | . 28 | 3 | | Graphs of $\sin \theta$, $\tan \theta$, $\sec \theta$ | | | . 28 | 5 | | Chapter XXIII. SUMMATION OF FINITE SERIES | | | | | | If $u_r = v_{r+1} - v_r$, then $S = v_{n+1} - v_1$ | | | . 28 | 8 | | Sum of the sines and cosines of a series of n angles: | | | | 9 | | When the common difference is $\frac{2k\pi}{n}$, the sum is zero | , | | . 29 | 0 | | Sum of the squares and cubes of the sines and co | | | | | | series of angles in A.P | | | | 3 | | Chapter XXIV. MISCELLANEOUS TRANSFORMAT IDENTITIES. | TONS | ANI | D | | | Symmetrical Expressions. Σ and Π notation . | | | . 29 | 6 | | Alternating Expressions | | | . 30 | 3 | | Allied formulæ in Algebra and Trigonometry . | | | . 30 | 6 | | Alternating Expressions | | • | . 30 | 8 | | Chapter XXV. MISCELLANEOUS THEOREMS AND | EXA | MPLE | ls. | | | Inequalities. Maxima and Minima | | | . 31 | .3 | | Flimination | | | . 31 | | | Application of Trigonometry to Theory of Equations | 3 | | . 32 | 6 | | Application of Theory of Equations to Trigonometry | | | . 02 | | | Miscellaneous Examples. I | | | . 33 | 36 | | Miscellaneous Examples, K | | • | . 38 | 37 | | Tables of Logarithms, Antilogarithms, Natural and I | | | | | | Functions | | | . 37 | 1 | | Answers | | | . 39 |)1 | ### ELEMENTARY TRIGONOMETRY. #### CHAPTER I. #### MEASUREMENT OF ANGLES, 1. The word Trigonometry in its primary sense signifies the measurement of triangles. From an early date the science also included the establishment of the relations which subsist between the sides, angles, and area of a triangle; but now it has a much wider scope and embraces all manner of geometrical and algebraical investigations carried on through the medium of certain quantities called trigonometrical ratios, which will be defined in Chap. II. In every branch of Higher Mathematics, whether Pure or Applied, a knowledge of Trigonometry is of the greatest value. 2. Definition of Angle. Suppose that the straight line OP in the figure is capable of revolving about the point O, and Œ suppose that in this way it has passed successively from the position OA to the positions occupied by OB, OC, OD, ..., then the angle between OA and any position such as OC is measured by the amount of revolution which the line OP has undergone in passing from its initial position OA into its final position OC. Moreover the line OP may make any number of complete revolutions through the original position OA before taking up its final position. It will thus be seen that in Trigonometry angles are not restricted as in Geometry, but may be of any magnitude. The point O is called the *origin*, and OA the *initial line*; the revolving line OP is known as the *generating line* or the radius vector. - 3. Measurement of Angles. We must first select some fixed
unit. The natural unit would be a right angle, but as in practice this is inconveniently large, two systems of measurement have been established, in each of which the unit is a certain fraction of a right angle. - 4. Sexagesimal Measure. A right angle is divided into 90 equal parts called degrees, a degree into 60 equal parts called minutes, a minute into 60 equal parts called seconds. An angle is measured by stating the number of degrees, minutes, and seconds which it contains. For shortness, each of these three divisions, degrees, minutes, seconds, is denoted by a symbol; thus the angle which contains 53 degrees 37 minutes 2.53 seconds is expressed symbolically in the form 53° 37′ 2.53″. 5. Centesimal Measure. A right angle is divided into 100 equal parts called grades, a grade into 100 equal parts called minutes, a minute into 100 equal parts called seconds. In this system the angle which contains 53 grades 37 minutes 2.53 seconds is expressed symbolically in the form 53° 37° 2.53". It will be noticed that different accents are used to denote sexagesimal and centesimal minutes and seconds; for though they have the same names, a centesimal minute and second are not the same as a sexagesimal minute and second. Thus a right angle contains 90×60 sexagesimal minutes, whereas it contains 100×100 centesimal minutes. Sexagesimal Measure is sometimes called the English System, and Centesimal Measure the French System. 6. In numerical calculations the sexagesimal measure is always used. The centesimal method was proposed at the time of the French Revolution as part of a general system of decimal measurement, but has never been adopted even in France, as it would have made necessary the alteration of Geographical, Nautical, Astronomical, and other tables prepared according to the sexagesimal method. Beyond giving a few examples in transformation from one system to the other which afford exercise in easy Arithmetic, we shall after this rarely allude to centesimal measure. In theoretical work it is convenient to use another method of measurement, where the unit is the angle subtended at the centre of a circle by an arc whose length is equal to the radius. This system is known as Circular or Radian Measure, and will be fully explained in Chapter VII. An angle is usually represented by a single letter, different letters $A, B, C, \ldots, a, \beta, \gamma, \ldots, \theta, \phi, \psi, \ldots$, being used to distinguish different angles. For angles estimated in sexagesimal or centesimal measure these letters are used indifferently, but we shall always denote angles in circular measure by letters taken from the Greek alphabet. 7. If the number of degrees and grades contained in an angle be D and G respectively, to prove that $\frac{D}{10} = \frac{G}{10}$. In sexagesimal measure, the given angle when expressed as the fraction of a right angle is denoted by $\frac{D}{90}$. In centesimal measure, the same fraction is denoted by $\frac{\ell i'}{100}$; $$\therefore \frac{D}{90} = \frac{G}{100}; \text{ that is, } \frac{D}{9} = \frac{G}{10}.$$ 8. To pass from one system to the other it is advisable first to express the given angle in terms of a right angle. In centesimal measure any number of grades, minutes, and seconds may be immediately expressed as the decimal of a right angle. Thus 23 grades = $\frac{23}{100}$ of a right angle = 23 of a right angle; 15 minutes = $\frac{1.5}{100}$ of a grade = 15 of a grade = 0015 of a right angle; .'. 23^g 15' = 2315 of a right angle. Similarly, 15⁶ 7' 53.4" = 1507534 of a right angle. Conversely, any decimal of a right angle can be at once expressed in grades, minutes, and seconds. Thus 2173025 of a right angle = 21'73025° = 21° 73'025' = 21° 73' 2.5'' In practice the intermediate steps are omitted. Example 1. Reduce 2º 13' 4.5" to sexagesimal measure. '0213045 of a right angle This angle = 0213045 of a right angle $=1^{\circ}55'2.658''$. 1.917405 degrees 60 55.0443 minutes 60 2.658 seconds. Obs. In the Answers we shall express the angles to the nearest tenth of a second, so that the above result would be written 1°55′2.7″. Example 2. Reduce 12°13'14.3" to centesimal measure. This angle = 13578487...of a right angle $=13^{\circ}57^{\circ}84.9^{\circ}$. 60) 14.3 seconds 60) 13 238333...minutes 90) 12:2206388.. degrees 13578487...of a right angle. #### EXAMPLES. I. Express as the decimal of a right angle 1. 67° 30′. 2. 11° 15′. 3. 376 501. 4. 2° 10′ 12″. 5. 8° 0′ 36″. 6. 2° 4' 4.5". Reduce to centesimal measure 7. 69° 13′ 30″. 8. 19° 0′ 45″. 9. 50° 37′ 5.7″. 10 43° 52′ 38·1″. 11° 0′ 38·4″. 11. **12**. 142° 15′ 45″. 13. 12' 9". 14. 3' 26:3". Reduce to sexagesimal measure 15. 56g 87' 50". 16. 39^s 6' 25". 40° 1' 25.4". 17. 18. 1^g 2' 3''. 35 2' 5". 19. 20. 8^g 10' 6.5". 21. 6' 25". 22. 37' 5". 23. The sum of two angles is 80s and their difference is 18°; find the angles in degrees. 24. The number of degrees in a certain angle added to the number of grades in the angle is 152: what is the angle? 25. If the same angle contains in English measure x minutes, and in French measure y minutes, prove that 50x = 27y. 26. If s and t respectively denote the numbers of sexagesimal and centesimal seconds in any angle, prove that 250s = 81t. #### CHAPTER II. #### TRIGONOMETRICAL RATIOS. 9. Definition. Ratio is the relation which one quantity bears to another of the *same* kind, the comparison being made by considering what multiple, part or parts, one quantity is of the other. To find what multiple or part A is of B we divide A by B; hence the ratio of A to B may be measured by the fraction $\frac{A}{B}$. In order to compare two quantities they must be expressed in terms of the same unit. Thus the ratio of 2 yards to 27 inches is measured by the fraction $\frac{2 \times 3 \times 12}{27}$ or $\frac{8}{3}$. Obs. Since a ratio expresses the number of times that one quantity contains another, every ratio is a numerical quantity. 10. DEFINITION. If the ratio of any two quantities can be expressed exactly by the ratio of two integers the quantities are said to be **commensurable**; otherwise, they are said to be **incommensurable**. For instance, the quantities $8\frac{1}{5}$ and $5\frac{1}{5}$ are commensurable, while the quantities $\sqrt{2}$ and 3 are incommensurable. But by finding the numerical value of $\sqrt{2}$ we may express the value of the ratio $\sqrt{2}$: 3 by the ratio of two commensurable quantities to any required degree of approximation. Thus to 5 decimal places $\sqrt{2}=1.41421$, and therefore to the same degree of approximation $\sqrt{2}$: 3=1.41421 : 3=141421 : 300000. Similarly, for the ratio of any two incommensurable quantities. #### Trigonometrical Ratios. 11. Let PAQ be any acute angle; in AP one of the boundary lines take a point B and draw BC perpendicular to AQ. Thus a right-angled triangle BAC is formed. With reference to the angle A the following definitions are employed. The ratio $$\frac{BC}{AB}$$ or $\frac{opposite\ side}{hypotenuse}$ is called the sine of A. The ratio $$\frac{AC}{AB}$$ or $\frac{adjacent\ side}{hypotenuse}$ is called the **cosine of A.** The ratio $$\frac{BC}{AC}$$ or $\frac{opposite\ side}{adjacent\ side}$ is called the **tangent of A**. The ratio $$\frac{AC}{BC}$$ or $\frac{adjacent\ side}{opposite\ side}$ is called the **cotangent of A.** The ratio $$\frac{AB}{AC}$$ or $\frac{hypotenuse}{adjacent \ side}$ is called the **secant of A**. The ratio $$\frac{AB}{BC}$$ or $\frac{hypotenuse}{opposite\ side}$ is called the **cosecant of A.** These six ratios are known as the **trigonometrical ratios**. It will be shewn later that as long as the angle remains the same the trigonometrical ratios remain the same. [Art. 19.] 12. Instead of writing in full the words sine, cosine, tangent, cotangent, secant, cosecant, abbreviations are adopted. Thus the above definitions may be more conveniently expressed and arranged as follows: $$\sin A = \frac{BC}{AB}, \qquad \csc A = \frac{AB}{BC},$$ $$\cos A = \frac{AC}{AB}, \qquad \sec A = \frac{AB}{AC},$$ $$\tan A = \frac{BC}{AC}, \qquad \cot A = \frac{AC}{BC}.$$ In addition to these six ratios, two others, the *versed sine* and *coversed sine* are sometimes used; they are written vers A and covers A and are thus defined: vers $$A = 1 - \cos A$$, covers $A = 1 - \sin A$. - 13. In Chapter VIII, the definitions of the trigonometrical ratios will be extended to the case of angles of any magnitude, but for the present we confine our attention to the consideration of acute angles. - 14. Although the verbal form of the definitions of the trigonometrical ratios given in Art. 11 may be helpful to the student at first, he will gain no freedom in their use until he is able to write down from the figure any ratio at sight. In the adjoining figure, PQR is a right-angled triangle in which PQ=13, PR=5, QR=12. Since PQ is the greatest side, R is the right angle. The trigonometrical ratios of the angles P and Q may be written down at once; for example, $$\sin Q = \frac{PR}{PQ} = \frac{5}{13}, \qquad \cos Q = \frac{QR}{PQ} = \frac{12}{13},$$ $$\tan P = \frac{QR}{PR} = \frac{12}{5}, \qquad \csc P = \frac{PQ}{QR} = \frac{13}{12}.$$ - 15. It is important to observe that the trigonometrical ratios of an angle are numerical quantities. Each one of them represents the ratio of one length to another, and they must themselves never be regarded as lengths. - 16. In every right-angled triangle the hypotenuse is the greatest side; hence from the definitions of Art. 11 it will be seen that those ratios which have the hypotenuse in the denominator can never be greater than unity, while those which have the hypotenuse in the numerator can never be less than unity. Those ratios which do not involve the hypotenuse are not thus restricted in value, for either of the two sides which subtend the acute angles may be the greater. Hence the sine and cosine of an angle can never be greater than 1; the cosecant and secant of an angle can never be
less than 1; the tangent and cotangent may have any numerical value. Example 1. Draw an angle of 49°, and find by measurement its sine and cosine. With a protractor make the $\angle PAQ$ equal to 49°. According to the definition we may take any point B on AP, and draw BC perp. to AQ. It will be convenient to use squared paper and to choose so that AB=10 units. Then by measurement BC=7.5 units, AC=6.6 units. Hence $$\sin 49^{\circ} = \frac{BC}{AB} = \frac{7.5}{10} = .75,$$ and $\cos 49^\circ = \frac{AC}{AB} = \frac{6.6}{10} = .66.$ Example 2. Construct an angle whose sine is 39, and find the approximate value of its cosine. Since $39 = \frac{3.9}{10}$, we first draw a rt-angled \triangle whose hypotenuse is Hence describe a semi-circle of diameter AB, 10 units in length. With centre B and radius 3-9 units draw an are to cut the semi-circle at C. Then $\angle ACB$ in the semi-circle is 90°. 10 units and one of whose sides is 3.9. Hence ABC is a right-angled triangle, and $$\therefore \sin BAC = \frac{BC}{AB} = \frac{3.9}{10} = .39.$$ Thus BAC is the required angle. Also by measurement AC = 9.2 units. $$\therefore \cos BAC = \frac{AC}{AB} = \frac{9\cdot 2}{10} = \cdot 92.$$ Example 3. Construct an angle whose tangent is 1.2 and find its sine and cosine. Since $1\cdot 2 = \frac{12}{10}$, we must construct a right-angled triangle such that the ratio of the sides containing the right angle is 12:10. Hence draw AB=10 units and erect BC perpendicular to AB, and =12 units. Then $$\tan BAC = \frac{CB}{AB} = \frac{12}{10} = 1.2$$, Hence BAC is the required angle, and by measurement AC=15.6. $$\therefore \sin BAC = \frac{12}{15.6} = .77$$, and $\cos BAC = \frac{10}{15.6} = .64$. #### EXAMPLES II. a. [Approximate results should be given to two places of decimals.] - 1. Draw an angle of 77°, and find by measurement the value of its sine and cosine. - 2. Construct an angle of 39°, and find the value of its sine and cosine. - 3. The sine of an angle is '88; draw the angle and find the value of its cosine. - 4. Construct an angle whose cosine is '34; measure the angle to the nearest degree, and find its sine and tangent. - 5. Draw an angle of 42°, and find its tangent and sine. - 6. Given sec A = 2.8, draw the angle and measure it to the nearest degree. - 7. Construct an angle whose sine is '6; measure the angle to the nearest degree. - 8. Construct an angle from each of the following data: - (i) $\tan A = .7$; (ii) $\cos B = .9$; (iii) $\sin C = .71$. In each case measure the angle to the nearest degree. - Find $\sin A$, $\tan B$, $\cos C$. - 9. Construct an angle A such that $\tan A = 1$ 6. Measure the angle to the nearest degree, and find its sine and cosine. - 10. Construct a triangle ABC, right-angled at C, having the hypotenuse 10 cm. in length, and $\tan A = 81$. Measure AC and the angle A; and find the values of $\sin A$ and $\cos A$. - 11. Find the cosine and cosecant of an angle A whose sine is 34. Prove that the values approximately satisfy the relation $\sin A \csc A = 1$. - 12. Draw a triangle ABC having BC=8 cm., $\angle ABC=53^{\circ}$, $\angle ACB=72^{\circ}$. Draw and measure the altitude, and hence find approximately the values of $\tan 53^{\circ}$, $\cot 72^{\circ}$. - 13. Draw a right-angled triangle ABC from the following data: $$\tan A = .7$$, $\angle C = 90^{\circ}$, $b = 2.8$ cm. Measure c and the $\angle A$. 14. Draw the angles whose sines are '67 and '94 on the same side of a common arm. Measure their difference in degrees. 17. Let ABC be a right-angled triangle having the right angle at A; then by Geometry, the sq. on BC =sum of sqq. on AC and AB, or, more briefly, $$BC^2 = AC^2 + AB^2$$. When we use this latter mode of expression it is understood that the sides AB, AC, BC are expressed in terms of some common unit, and the above statement may be regarded as a *numerical relation* connecting the numbers of units of length in the three sides of a right-angled triangle. It is usual to denote the numbers of units of length in the sides opposite the angles A, B, C by the letters a, b, c respectively. Thus in the above figure we have $a^2 = b^2 + c^2$, so that if the lengths of two sides of a right-angled triangle are known, this equation will give the length of the third side. Example 1. ABC is a right-angled triangle of which C is the right angle; if a=3, b=4, find c, and also $\sin A$ and $\cot B$. Here $$c^2 = a^2 + b^2 = (3)^2 + (4)^2 = 9 + 16 = 25$$; $$\therefore e=5.$$ Also $$\sin A = \frac{BC}{AB} = \frac{3}{5};$$ $$\cot B = \frac{BC}{AC} = \frac{3}{4}.$$ Example 2. A ladder 17 ft. long is placed with its foot at a distance of 8 ft, from the wall of a house and just reaches a window-sill. Find the height of the window-sill, and the sine and tangent of the angle which the ladder makes with the wall. Let AC be the ladder, and BC the wall. Let x be the number of feet in BC; then $$\dot{x}^2 = (17)^2 - (8)^2 = (17 + 8)(17 - 8) = 25 \times 9$$; $$\therefore x = 5 \times 3 = 15.$$ Also $$\sin C = \frac{AB}{AC} = \frac{8}{17};$$ $$\tan C = \frac{AB}{BC} = \frac{8}{15}$$. 18. The following important proposition depends upon the well-known property of similar triangles. The student who has not read Proportion in Geometry should not fail to notice the result arrived at, even if he is unable at this stage to understand the proof. 19. To prove that the trigonometrical ratios remain unaltered so long as the angle remains the same. Let AOP be any acute angle. In OP take any points B and D, and draw BC and DE perpendicular to OA. Also take any point F in OP and draw FG at right angles to OP. From the triangle $B\partial \ell'$, $\sin P\partial A = \frac{B\ell'}{\partial B}$; from the triangle $D\bar{O}E$, $\sin POA = \frac{DE}{\bar{O}D}$; from the triangle FOG, $\sin POA = \frac{FG}{OG}$. But the triangles BOC, DOE, FOG are equiangular: $$\therefore \quad \frac{BC}{OB} = \frac{DE}{OD} = \frac{FG}{OG}.$$ Thus the sine of the angle POA is the same whether it is obtained from the triangle BOC, or from the triangle DOE, or from the triangle FOG. A similar proof holds for each of the other trigonometrical ratios. These ratios are therefore independent of the length of the revolving line and depend only on the magnitude of the angle. 20. If A denote any acute angle, we have proved that all the trigonometrical ratios of A depend only on the magnitude of the angle A and not upon the lengths of the lines which bound the angle. It may easily be seen that a change made in the value of A will produce a consequent change in the values of all the trigonometrical ratios of A. This point will be discussed more fully in Chap. IX. ELEMENTARY TRIGONOMETRY. DEFINITION. Any expression which involves a variable quantity x, and whose value is dependent on that of x is called a function of x. Hence the trigonometrical ratios may also be defined as trigonometrical functions; for the present we shall chiefly employ the term ratio, but in a later part of the subject the idea of ratio is gradually lost and the term function becomes more appropriate. 21. The use of the principle proved in Art. 19 is well shewn in the following example, where the trigonometrical ratios are employed as a connecting link between the lines and angles. Example. ABC is a right-angled triangle of which A is the right angle. BD is drawn perpendicular to BC and meets CA produced in D: if AB=12, AC=16, BC=20, find BD and CD. From the right-angled triangle *CBD*, $$\frac{BD}{BC} = \tan C$$; from the right-angled triangle ABC, $$C$$, $\frac{AB}{AC} = \tan C$; C 16 A C $$\therefore \frac{BD}{BC} = \frac{AB}{AC};$$ $$\therefore \frac{BD}{20} = \frac{12}{16}; \text{ whence } BD = 15.$$ Again, $\frac{CD}{CB} = \sec C = \frac{BC}{CA};$ $$\therefore \frac{CD}{20} = \frac{20}{16}; \text{ whence } CD = 25.$$ 12 The same results can be obtained by the help of Euc. vi. 8. #### EXAMPLES. II. b. - 1. The sides AB, BC, CA of a right-angled triangle are 17, 15, 8 respectively; write down the values of $\sin A$, $\sec A$, $\tan B$, $\sec B$. - **2.** The sides PQ, QR, RP of a right-angled triangle are 13, 5, 12 respectively: write down the values of $\cot P$, $\csc Q$, $\cos Q$, $\cos P$. - 3. ABC is a triangle in which A is a right angle; if b=15, c=20, find a, sin C, cos B, cot C, sec C. - **4.** ABC is a triangle in which B is a right angle; if a=24, b=25, find c, sin C, tan A, cosec A. - 5. The sides ED, EF, DF of a right-angled triangle are 35, 37, 12 respectively: write down the values of $\sec E$, $\sec F$, $\cot E$, $\sin F$. - 6. The hypotenuse of a right-angled triangle is 15 inches, and one of the sides is 9 inches: find the third side and the sine, cosine and tangent of the angle opposite to it. - 7. Find the hypotenuse AB of a right-angled triangle in which AC=7, BC=24. Write down the sine and cosine of A, and shew that the sum of their squares is equal to 1. - 8. A ladder 41 ft. long is placed with its foot at a distance of 9 ft. from the wall of a house and just reaches a window-sill. Find the height of the window-sill, and the sine and cotangent of the angle which the ladder makes with the ground. - 9. A ladder is 29 ft. long; how far must its foot be placed from a wall so that the ladder may just reach the top of the wall which is 21 ft. from the ground? Write down all the trigonometrical ratios of the angle between the ladder and the wall. - 10. ABCD is a square; C is joined to E, the middle point of AD: find all the trigonometrical ratios of the angle ECD. - 11. ABCD is a quadrilateral in which the diagonal AC is at right angles to each of the sides AB, CD: if AB=15, AC=36, AD=85, find sin ABC, see ACB, cos CDA, cosec DAC. - 12. PQRS is a quadrilateral in which the angle PSR is a right angle. If the diagonal PR is at right angles to RQ, and RP=20, RQ=21, RS=16, find $\sin PRS$, $\tan RPS$, $\cos RPQ$, $\csc PQR$. #### CHAPTER III. #### RELATIONS BETWEEN THE TRIGONOMETRICAL RATIOS. - 22. Reciprocal relations
between certain ratios. - (1) Let ABC be a triangle, right-angled at C; then $$\sin A = \frac{BC}{AB} = \frac{a}{c},$$ and $$\csc A = \frac{AB}{BC} = \frac{c}{a};$$ Thus sin A and cosec A are reciprocals; $$\therefore \sin A = \frac{1}{\csc A},$$ and $$\csc A = \frac{1}{\sin A}.$$ (2) Again, $$\cos A = \frac{AC}{AB} = \frac{b}{c}$$, and $\sec A = \frac{AB}{AC} = \frac{c}{b}$; $\therefore \cos A \times \sec A = \frac{b}{c} \times \frac{c}{b} = 1$; $\therefore \cos A = \frac{1}{\sec A}$, and $\sec A = \frac{1}{\cos A}$. (3) Also $$\tan A = \frac{BC}{AC} = \frac{a}{b}, \text{ and } \cot A = \frac{AC}{BC} = \frac{b}{a};$$ $$\therefore \tan A \times \cot A = \frac{a}{b} \times \frac{b}{a} = 1;$$ $$\therefore \tan A = \frac{1}{\cot A}, \text{ and } \cot A = \frac{1}{\cot A}.$$ 23. To express tan A and cot A in terms of sin A and cos A. From the adjoining figure we have $$\tan A = \frac{BC}{AC} = \frac{a}{b} = \frac{a}{c} \div \frac{b}{c}$$ $$= \sin A \div \cos A;$$ $$= \sin A \cdot \cot A;$$ $$\tan A = \frac{\sin A}{\cos A}.$$ Again, $$\cot A = \frac{AC}{BC} = \frac{b}{a} = \frac{b}{c} \div \frac{a}{c}$$ $$= \cos A \div \sin A;$$ $$\therefore \cot A = \frac{\cos A}{\sin A};$$ which is also evident from the reciprocal relation cot $A = \frac{1}{\tan A}$. Example. Prove that cosec $A \tan A = \sec A$. $$\begin{aligned} \cos c A & \tan A = \frac{1}{\sin A} \times \frac{\sin A}{\cos A} = \frac{1}{\cos A} \\ &= \sec A. \end{aligned}$$ **24.** We frequently meet with expressions which involve the square and other powers of the trigonometrical ratios, such as $(\sin A)^2$, $(\tan A)^3$, ... It is usual to write these in the shorter forms $\sin^2 A$, $\tan^3 A$, ... Thus $$\tan^2 A = (\tan A)^2 = \left(\frac{\sin A}{\cos A}\right)^2$$ $$= \frac{(\sin A)^2}{(\cos A)^2} = \frac{\sin^2 A}{\cos^2 A}.$$ Example. Shew that $\sin^2 A \sec A \cot^2 A = \cos A$. $$\begin{split} \sin^2 \! A \, \sec A \, \cot^2 \! A &= \sin^2 \! A \times \frac{1}{\cos A} \times \left(\frac{\cos A}{\sin A}\right)^2 \\ &= \sin^2 \! A \times \frac{1}{\cos A} \times \frac{\cos^2 A}{\sin^2 \! A} \\ &= \cos A, \end{split}$$ by cancelling factors common to numerator and denominator. 25. To prove that $\sin^2 A + \cos^2 A = 1$. Let BAC be any acute angle; draw BC perpendicular to AC, and denote the sides of the right-angled triangle ABC by a, b, c. By definition, $\sin A = \frac{BC}{AB} = \frac{a}{c};$ $\cos A = \frac{AC}{AB} = \frac{b}{c};$ and $$\therefore \sin^2 A + \cos^2 A = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2}$$ $$= \frac{c^2}{c^2}$$ cor. $$\sin^2 A = 1 - \cos^2 A$$, $\sin A = \sqrt{1 - \cos^2 A}$; $\cos^2 A = 1 - \sin^2 A$, $\cos A = \sqrt{1 - \sin^2 A}$. Example 1. Prove that $$\cos^4 A - \sin^4 A = \cos^2 A - \sin^2 A$$. $\cos^4 A - \sin^4 A = (\cos^2 A + \sin^2 A)(\cos^2 A - \sin^2 A)$ $= \cos^2 A - \sin^2 A$, since the first factor is equal to 1. Example 2. Prove that $$\cot \alpha \sqrt{1 - \cos^2 \alpha} = \cos \alpha$$. $$\cot \alpha \sqrt{1 - \cos^2 \alpha} = \cot \alpha \times \sin \alpha$$ $$= \frac{\cos \alpha}{\sin \alpha} \times \sin \alpha = \cos \alpha.$$ 26. To prove that $\sec^2 A = 1 + \tan^2 A$. With the figure of the previous article, we have $$\sec A = \frac{AB}{AC} = \frac{c}{b};$$ $$\therefore \sec^2 A = \frac{c^2}{b^2} = \frac{b^2 + a^2}{b^2}$$ $$= 1 + \frac{a^2}{b^2}$$ $$= 1 + \tan^2 A.$$ Cor. $\sec^2 A - \tan^2 A - 1$, $\sec A = \sqrt{1 + \tan^2} A$, $\tan^2 A = \sec^2 A - 1$, $\tan A = \sqrt{\sec^2 A} - 1$. Example. Prove that $\cos A \sqrt{\sec^2 A - 1} = \sin A$. $$\cos A \sqrt{\sec^2 A - 1} = \cos A \times \tan A$$ $$= \cos A \times \frac{\sin A}{\cos A}$$ $$= \sin A$$ 27. To prove that $\csc^2 A = 1 + \cot^2 A$. With the figure of Art. 25, we have cosec $$A = \frac{AB}{BC} = \frac{c}{a}$$; \therefore cosec² $A = \frac{c^2}{a^2} = \frac{a^2 + b^2}{a^2}$ $= 1 + \frac{b^2}{a^2}$ $= 1 + \cot^2 A$. Cor. $\csc^2 A - \cot^2 A = 1$, $\csc A = \sqrt{1 + \cot^2 A}$, $\cot^2 A = \csc^2 A - 1$, $\cot A = \sqrt{\csc^2 A - 1}$. Example. Prove that $\cot^4 \alpha - 1 = \csc^4 \alpha - 2 \csc^2 \alpha$, $\cot^4 \alpha - 1 = (\cot^2 \alpha + 1) (\cot^2 \alpha - 1)$ $$= \csc^2 \alpha \left(\csc^2 \alpha - 1 - 1 \right)$$ $$= \csc^2 \alpha \left(\csc^2 \alpha - 2 \right)$$ $$= \csc^4 \alpha - 2 \csc^2 \alpha.$$ - 28. The formulæ proved in the last three articles are not independent, for they are merely different ways of expressing in trigonometrical symbols the property of a right-angled triangle known as the Theorem of Pythagoras. - 29. It will be useful here to collect the formulæ proved in this chapter. I. $$\csc A \times \sin A = 1$$, $\csc A = \frac{1}{\sin A}$, $\sin A = \frac{1}{\csc A}$; $\sec A \times \cos A = 1$, $\sec A = \frac{1}{\cos A}$, $\cos A = \frac{1}{\sec A}$; $\cot A \times \tan A = 1$, $\cot A = \frac{1}{\tan A}$, $\tan A = \frac{1}{\cot A}$. II. $\tan A = \frac{\sin A}{\cos A}$, $\cot A = \frac{\cos A}{\sin A}$. III. $\sin^2 A + \cos^2 A = 1$, $\sec^2 A = 1 + \tan^2 A$, $\csc^2 A = 1 + \cot^2 A$. #### Easy Identities. 30. We shall now exemplify the use of these fundamental formulæ in proving identities. An identity asserts that two expressions are always equal, and the proof of this equality is called "proving the identity." Some easy illustrations have already been given in this chapter. The general method of procedure is to choose one of the expressions given (usually the more complicated of the two) and to shew by successive transformations that it can be made to assume the form of the other. Example 1. Prove that $\sin^2 A \cot^2 A + \cos^2 A \tan^2 A = 1$. Here it will be found convenient to express all the trigonometrical ratios in terms of the sine and cosine. The first side = $$\sin^2 A \cdot \frac{\cos^2 A}{\sin^2 A} + \cos^2 A \cdot \frac{\sin^2 A}{\cos^2 A}$$ = $\cos^2 A + \sin^2 A$ = 1. III.] Example 2. Prove that $\sec^4 \theta - \sec^2 \theta = \tan^2 \theta + \tan^4 \theta$. The form of this identity at once suggests that we should use the secant-tangent formula of Art. 26; hence the first side = $$\sec^2 \theta (\sec^2 \theta - 1)$$ = $(1 + \tan^2 \theta) \tan^2 \theta$ = $\tan^2 \theta + \tan^4 \theta$. #### EXAMPLES. III. a. Prove the following identities: - $\sin A \cot A = \cos A$. \times 1. - 2. $\cos A \tan A = \sin A$. 4. sin A sec A = tan A. A. - $\cot A \sec A = \csc A$, \times 3. $\cos A \csc A = \cot A$. \times 5. - 6. $\cot A \sec A \sin A = 1$. - $(1-\cos^2 A) \csc^2 A = 1. \$ 7. - 8. $(1-\sin^2 A)\sec^2 A = 1$. - $\cot^2\theta (1-\cos^2\theta) = \cos^2\theta$. 9. - $(1-\cos^2\theta)\sec^2\theta = \tan^2\theta$. 10. - $\tan a \sqrt{1-\sin^2 a} = \sin a$, \times 11. - $\csc a \sqrt{1-\sin^2 a} = \cot a$. \times 12. - $(1+\tan^2 A)\cos^2 A = 1$. 14, $(\sec^2 A 1)\cot^2 A = 1$. 13. - $(1-\cos^2\theta)(1+\tan^2\theta)=\tan^2\theta$. 15. - $\cos a \csc a \sqrt{\sec^2 a 1} = 1$. 16. - $\sin^2 A (1 + \cot^2 A) = 1$. X 18. $(\csc^2 A 1) \tan^2 A 1$. X 17. - 19. $(1-\cos^2 A)(1+\cot^2 A)=1.$ - $\sin a \sec a \sqrt{\csc^2 a 1} = 1$. 20. - $\cos a \sqrt{\cot^2 a + 1} = \sqrt{\csc^2 a 1}$. 21. - 22. $\sin^2\theta \cot^2\theta + \sin^2\theta = 1$. - $(1 + \tan^2 \theta)(1 \sin^2 \theta) = 1$. 23. - $\sin^2\theta \sec^2\theta = \sec^2\theta 1$. 24. - 25. $\csc^2 \theta \tan^2 \theta 1 = \tan^2 \theta$. Prove the following identities: 26. $$\frac{1}{\sec^2 A} + \frac{1}{\csc^2 A} = 1$$. 27. $\frac{1}{\cos^2 A} - \frac{1}{\cot^2 A} = 1$. 28. $\frac{\sin A}{\csc A} + \frac{\cos A}{\sec A} = 1$. 29. $\frac{\sec A}{\cos A} - \frac{\tan A}{\cot A} = 1$. 28. $$\frac{\sin A}{\csc A} + \frac{\cos A}{\sec A} = 1$$. 29. $\frac{\sec A}{\cos A} - \frac{\tan A}{\cot A} = 1$. 30. $$\sin^4 a - \cos^4 a = 2\sin^2 a - 1 = 1 - 2\cos^2 a$$. 31. $$\sec^4 u - 1 = 2 \tan^2 a + \tan^4 a$$. 32. $$\csc^4 a - 1 = 2 \cot^2 a + \cot^4 a$$. 33. $$(\tan a \csc a)^2 - (\sin a \sec a)^2 = 1$$. **34.** $$(\sec \theta \cot \theta)^2 - (\cos \theta \csc \theta)^2 = 1.$$ 35. $$\tan^2 \theta = \cot^2 \theta = \sec^2 \theta = \csc^2 \theta$$. *31. The foregoing examples have required little more than a direct application of the fundamental formulæ; we shall now give some identities offering a greater variety of treatment. Example 1. Prove that $\sec^2 A + \csc^2 A = \sec^2 A \csc^2 A$. The first side $$=\frac{1}{\cos^2 A} + \frac{1}{\sin^2 A} = \frac{\sin^2 A + \cos^2 A}{\cos^2 A \sin^2 A} = \frac{1}{\cos^2 A \sin^2 A} = \sec^2 A \csc^2 A.$$ Occasionally it is found convenient to prove the equality of the two expressions by reducing each to the same form. Example 2. Prove that $$\sin^2 A \tan A + \cos^2 A \cot A + 2 \sin A \cos A = \tan A + \cot A$$. The first side = $$\sin^2 A \cdot \frac{\sin A}{\cos A} + \cos^2 A \cdot \frac{\cos A}{\sin A} + 2 \sin A \cos A$$ = $\frac{\sin^4 A + \cos^4 A + 2 \sin^2 A}{\sin A \cos A}$ = $\frac{(\sin^2 A + \cos^2 A)^2}{\sin A \cos A} = \frac{1}{\sin A \cos A}$ The second side $$=\frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} = \frac{\sin^2 A + \cos^2 A}{\cos A \sin A}$$ $=\frac{1}{\sin A \cos A}$ Thus each side of the identity - 1 sin 4 cos 4. Example 3. Prove that $\frac{\tan \alpha - \cot \beta}{\tan \beta - \cot \alpha} = \tan \alpha \cot \beta$. The first side $$= \frac{\tan \alpha - \cot \beta}{1} = \frac{\tan \alpha - \cot \beta}{\tan \alpha - \cot \beta}$$ $$= \frac{\tan \alpha - \cot \beta}{1} = \frac{\tan \alpha \cot \beta}{\tan \alpha \cot \beta}$$ $$= \tan \alpha \cot \beta.$$ The transformations in the successive steps are usually suggested by the form into which we wish to bring the result. For instance, in this last example we might have proved the identity by substituting for the tangent and cotangent in terms of the sine and cosine. This however is not the best method, for the form in which the right-hand side is given suggests that we should retain $\tan \alpha$ and $\cot \beta$ unchanged throughout the work. ### *EXAMPLES. III. b. Prove the following identities: $$1.
\quad \frac{\sin a \cot^2 a}{\cos a} = \frac{1}{\tan a}$$ 2. $$\frac{\sec^2 a \cot a}{\csc^2 a} = \tan a$$ 3. $1 - \text{vers } \theta = \sin \theta \cot \theta$. 4. $$\operatorname{vers} \theta \sec \theta = \sec \theta - 1$$. - 5. $\sec \theta \tan \theta \sin \theta = \cos \theta$. - 6. $\tan \theta + \cot \theta = \sec \theta \csc \theta$. - 7. $\sqrt{1+\cot^2 A} \cdot \sqrt{\sec^2 A 1} \cdot \sqrt{1-\sin^2 A} = 1$. - 8. $(\cos\theta + \sin\theta)^2 + (\cos\theta \sin\theta)^2 = 2$. - 9. $(1 + \tan \theta)^2 + (1 \tan \theta)^2 = 2 \sec^2 \theta$. - 10. $(\cot \theta 1)^2 + (\cot \theta + 1)^2 = 2 \csc^2 \theta$. - 11. $\sin^2 A (1 + \cot^2 A) + \cos^2 A (1 + \tan^2 A) = 2$. - 12. $\cos^2 A (\sec^2 A \tan^2 A) + \sin^2 A (\csc^2 A \cot^2 A) = 1$. - 13. $\cot^2 a + \cot^4 a = \csc^4 a \csc^2 a$. - $\star 14. \quad \frac{\tan^2 a}{1 + \tan^2 a} \cdot \frac{1 + \cot^2 a}{\cot^2 a} = \sin^2 a \sec^2 a.$ - 15. $\frac{1}{1-\sin a} + \frac{1}{1+\sin a} = 2 \sec^2 a$. Prove the following identities: 16. $$\frac{\tan a}{\sec a - 1} + \frac{\tan a}{\sec a + 1} = 2 \csc a.$$ 17. $$\frac{1}{1+\sin^2 a} + \frac{1}{1+\csc^2 a} = 1$$. 18. $$(\sec \theta + \csc \theta)(\sin \theta + \cos \theta) = \sec \theta \csc \theta + 2$$. 19. $$(\cos \theta - \sin \theta)(\csc \theta - \sec \theta) = \sec \theta \csc \theta - 2$$. 20. $$(1 + \cot \theta + \csc \theta)(1 + \cot \theta - \csc \theta) = 2 \cot \theta$$. 21. $$(\sec \theta + \tan \theta - 1)(\sec \theta - \tan \theta + 1) = 2 \tan \theta$$. 22. $$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = \tan^2 A + \cot^2 A + 7$$. 23. $$(\sec^2 A + \tan^2 A)(\csc^2 A + \cot^2 A) = 1 + 2\sec^2 A \csc^2 A$$. 24. $$(1-\sin A + \cos A)^2 = 2(1-\sin A)(1+\cos A)$$. 25. $$\sin A (1 + \tan A) + \cos A (1 + \cot A) = \sec A + \csc A$$. **26.** $$\cos \theta (\tan \theta + 2) (2 \tan \theta + 1) = 2 \sec \theta + 5 \sin \theta$$. 27. $$(\tan \theta + \sec \theta)^2 = \frac{1 + \sin \theta}{1 - \sin \theta}$$. 28. $$\frac{2\sin\theta\cos\theta - \cos\theta}{1 - \sin\theta + \sin^2\theta - \cos^2\theta} = \cot\theta.$$ 29. $$\cot^2 \theta \cdot \frac{\sec \theta - 1}{1 + \sin \theta} + \sec^2 \theta \cdot \frac{\sin \theta - 1}{1 + \sec \theta} = 0$$. [The following examples contain functions of two angles; in each case the two angles are quite independent of each other.] 30. $$\tan^2 \alpha + \sec^2 \beta = \sec^2 \alpha + \tan^2 \beta$$. 31. $$\frac{\tan \alpha + \cot \beta}{\cot \alpha + \tan \beta} = \frac{\tan \alpha}{\tan \beta}.$$ 32. $$\frac{\tan \alpha - \cot \beta}{\cot \alpha - \tan \beta} = -\frac{\cot \beta}{\cot \alpha}.$$ 33. $$\cot a \tan \beta (\tan a + \cot \beta) = \cot a + \tan \beta$$. 34. $$\sin^2 a \cos^2 \beta - \cos^2 a \sin^2 \beta = \sin^2 a - \sin^2 \beta$$. 35. $$\sec^2 a \tan^2 \beta - \tan^2 a \sec^2 \beta = \tan^2 \beta - \tan^2 a$$. 36. $$(\sin a \cos \beta + \cos a \sin \beta)^2 + (\cos a \cos \beta - \sin a \sin \beta)^2 = 1$$. 32. By means of the relations collected together in Art. 29, all the trigonometrical ratios can be expressed in terms of any one. Example 1. Express all the trigonometrical ratios of A in terms of tan A. We have $$\cot A = \frac{1}{\tan A}$$; $$\sec A = \sqrt{1 + \tan^2 A};$$ $$\cos A = \frac{1}{\sec A} = \frac{1}{\sqrt{1 + \tan^2 A}};$$ $$\sin A = \frac{\sin A}{\cos A} \cos A = \tan A \cos A = \frac{\tan A}{\sqrt{1 + \tan^2 A}};$$ $$\csc A = \frac{1}{\sin A} = \frac{\sqrt{1 + \tan^2 A}}{\tan A}.$$ Obs. In writing down the ratios we choose the simplest and most natural order. For instance, cot A is obtained at once by the reciprocal relation connecting the tangent and cotangent: sec A comes immediately from the tangent-secant formula; the remaining three ratios now readily follow. Example 2. Given $\cos A = \frac{5}{13}$, find $\operatorname{cosec} A$ and $\cot A$. $$\begin{aligned} \cos \operatorname{e} A &= \frac{1}{\sin A} = \sqrt{\frac{1}{1 - \cos^2 A}} \\ &= \frac{1}{\sqrt{1 - \left(\frac{5}{13}\right)^2}} = \frac{1}{\sqrt{1 - \frac{25}{169}}} = \frac{1}{\sqrt{\frac{144}{169}}} = \frac{1}{\frac{12}{13}} = \frac{13}{12}. \\ \cot A &= \frac{\cos A}{\sin A} = \cos A \times \operatorname{cosec} A \\ &= \frac{5}{13} \times \frac{13}{12} = \frac{5}{12}. \end{aligned}$$ 33. It is always possible to describe a right-angled triangle when two sides are given: for the third side can be found by Geometry, and the triangle can then be constructed practically. We can thus readily obtain all the trigonometrical ratios when one is given, or express all in terms of any one. Example 1. Given $\cos A = \frac{5}{13}$, find $\csc A$ and $\cot A$. Take a right-angled triangle PQR, of which Q is the right angle, having the hypotenuse PR=13 units, and PQ=5 units. Let $$QR = x$$ units; then $$x^{2} = (13)^{2} - (5)^{2} = (13 + 5)(13 + 5)$$ $$= 18 \times 8 = 9 \times 2 \times 8;$$ $$\therefore x = 3 \times 4 = 12.$$ Now $$\cos RPQ = \frac{PQ}{PR} = \frac{5}{13}$$, so that $\angle RPQ = A$. Hence $$\csc A = \frac{PR}{QR} = \frac{13}{12}$$, and $\cot A = \frac{PQ}{OR} = \frac{5}{12}$. [Compare Art. 32, Ex. 2.] Example 2. Find $\tan A$ and $\cos A$ in terms of $\csc A$. Take a triangle PQR right-angled at Q, and having $\angle RPQ = A$. For shortness, denote cosec A by C. Then $$\operatorname{cosec} A = c = \frac{c}{1};$$ but $$\operatorname{cosec} A = \frac{PR}{QR};$$ $$\therefore \frac{PR}{QR} = \frac{c}{1}.$$ Let QR be taken as the unit of measurement; then QR=1, and therefore PR=c. Let PQ contain x units; then $$x^2 = c^2 - 1$$, so that $x = \sqrt{c^2 - 1}$. Hence $$\tan A = \frac{QR}{PQ} = \frac{1}{\sqrt{c^2 - 1}} = \frac{1}{\sqrt{\operatorname{cosec}^2 A - 1}},$$ and $$\cos A = \frac{PQ}{PR} = \frac{\sqrt{c^2 - 1}}{c} = \frac{\sqrt{\csc^2 A - 1}}{\csc A}.$$ ### EXAMPLES. III. c. - 1. Given $\sin A = \frac{1}{2}$, find sec A and $\cot A$. - 2. Given $\tan A = \frac{4}{3}$, find $\sin A$ and $\cos A$. - 3. Find $\cot \theta$ and $\sin \theta$ when $\sec \theta = 4$. - 4. If $\tan a = \frac{1}{2}$, find $\sec a$ and $\csc a$. - 5. Find the sine and cotangent of an angle whose secant is 7. - 6. If $25 \sin A = 7$, find $\tan A$ and $\sec A$. - 7. Express sin A and tan A in terms of cos A. - 8. Express cosec a and cos a in terms of cot a. - 9. Find $\sin \theta$ and $\cot \theta$ in terms of $\sec \theta$. - 10. Express all the trigonometrical ratios of A in terms of A. - 11. Given $\sin A \cos A = 0$, find cosec A. - 12. If $\sin A = \frac{m}{n}$, prove that $\sqrt{n^2 m^2} \cdot \tan A = m$. - 13. If $p \cot \theta = \sqrt{q^2 p^2}$, find $\sin \theta$. - 14. When $\sec A = \frac{m^2 + 1}{2m}$, find $\tan A$ and $\sin A$. - 15. Given $\tan A = \frac{2pq}{p^2 q^2}$, find $\cos A$ and $\csc A$. - 16. If $\sec \alpha = \frac{13}{5}$, find the value of $\frac{2 \sin \alpha 3 \cos \alpha}{4 \sin \alpha 9 \cos \alpha}$. - 17. If $\cot \theta = \frac{p}{q}$, find the value of $\frac{p \cos \theta q \sin \theta}{p \cos \theta + q \sin \theta}$. ### CHAPTER IV. #### TRIGONOMETRICAL RATIOS OF CERTAIN ANGLES. # 34. Trigonometrical Ratios of 45°. Let BAC be a right-angled isosceles triangle, with the right angle at C; so that $B=A=45^{\circ}$. Let each of the equal sides contain l units, then AC=BC=l. Also $$AB^{2} = l^{2} + l^{2} = 2l^{2};$$ $$\therefore AB = l\sqrt{2}.$$ $$\therefore \sin 45^{\circ} = \frac{BC}{AB} = \frac{l}{l\sqrt{2}} = \frac{1}{\sqrt{2}};$$ $$\cos 45^{\circ} = \frac{AC}{AB} = \frac{l}{l\sqrt{2}} = \frac{1}{\sqrt{2}};$$ $$\tan 45^{\circ} = \frac{BC}{AB} = \frac{l}{l} = 1.$$ The other three ratios are the reciprocals of these; thus $\csc 45^{\circ} = \sqrt{2}$, $\sec 45^{\circ} = \sqrt{2}$, $\cot 45^{\circ} = 1$; or they may be read off from the figure. ## 35. Trigonometrical Ratios of 60° and 30°. Let ABC be an equilateral triangle; thus each of its angles is 60° . Bisect $\angle BAC$ by AD meeting BC at D; then $\angle BAD=30^\circ$. By Euc. I. 4, the triangles ABD, ACD are equal in all respects; therefore BD = CD, and the angles at D are right angles. In the right-angled triangle ADB, let BD=l; then $$AB = BC = 2l;$$ $$\therefore AD^{2} = 4l^{2} - l^{2} = 3l^{2};$$ $$\therefore AD = l\sqrt{3}.$$ $$\therefore \sin 60^{\circ} = \frac{AD}{AB} = \frac{l\sqrt{3}}{2l} = \frac{\sqrt{3}}{2};$$ $$\cos 60^{\circ} = \frac{BD}{AB} = \frac{l}{2l} = \frac{1}{2};$$ $$\tan 60^{\circ} = \frac{AD}{AB} = \frac{l\sqrt{3}}{l} = \sqrt{3}.$$ Again, $$\sin 30^{\circ} = \frac{BD}{AB} = \frac{l}{2l} = \frac{1}{2};$$ $$\cos 30^{\circ} = \frac{AD}{AB} = \frac{l\sqrt{3}}{2l} = \frac{\sqrt{3}}{2};$$ $$\tan 30^{\circ} = \frac{BD}{AD} = \frac{l}{l\sqrt{3}} = \frac{1}{\sqrt{3}}$$ The other ratios may be read off from the figure. 36. The trigonometrical ratios of 45°, 60°, 30° occur very frequently; it is therefore important that the student should be able to quote readily their numerical values. The exercise which follows will furnish useful practice. At first it will probably be found safer to make use of the accompanying diagrams than to trust to the memory. The trigonometrical ratios of 45° can be read off from Fig. 1; those of 60° and 30° from Fig. 2. Example 1. Find the values of $\sec^3 45^\circ$ and $\sin 60^\circ \cot 30^\circ \tan 45^\circ$. $$\begin{split} \sec^3 45^\circ &= (\sec 45^\circ)^3 = (\surd 2)^3 = \surd 2 \times \surd 2 \times \surd 2 = 2 \sqrt{2}. \\ &\sin 60^\circ \cot 30^\circ \tan 45^\circ = \frac{\surd 3}{2} \times \surd 3 \times 1 = \frac{3}{2}. \end{split}$$ Example 2. Find the value of $2 \cot 45^{\circ} + \cos^3 60^{\circ} - 2 \sin^4 60^{\circ} + \frac{8}{4} \tan^2 30$. The value $$\begin{split} &= (2\times 1) + \left(\frac{1}{2}\right)^3 - 2\left(\frac{\sqrt{3}}{2}\right)^4 + \frac{3}{4}\left(\frac{1}{\sqrt{3}}\right)^2 \\ &= 2 + \frac{1}{8} - 2\left(\frac{3}{4}\right)^2 + \frac{3}{4}\left(\frac{1}{3}\right) \\ &= 2 + \frac{1}{8} - \frac{9}{8} + \frac{1}{4} = 1\frac{1}{4}. \end{split}$$ ## EXAMPLES. IV. a. Find the numerical value of 1. $\tan^2 60^\circ + 2 \tan^2
45^\circ$. 2. $\tan^3 45^\circ + 4 \cos^3 60^\circ$. 3. $2 \csc^2 45^\circ - 3 \sec^2 30^\circ$. 4. cot 60° tan 30° + sec² 45°. - 5. $2 \sin 30^{\circ} \cos 30^{\circ} \cot 60^{\circ}$. - 6. tan2 45° sin 60° tan 30° tan2 60°. - 7. $\tan^2 60^\circ + 4\cos^2 45^\circ + 3\sec^2 30^\circ$. - 8. $\frac{1}{2}$ cosec² 60° + sec² 45° 2 cot² 60°. - 9. $\tan^2 30^\circ + 2 \sin 60^\circ + \tan 45^\circ \tan 60^\circ + \cos^2 30^\circ$. - 10. $\cot^2 45^\circ + \cos 60^\circ \sin^2 60^\circ \frac{3}{4} \cot^2 60^\circ$. - 11. $3\tan^2 30^\circ + \frac{4}{3}\cos^2 30^\circ \frac{1}{2}\sec^2 45^\circ \frac{1}{3}\sin^2 60^\circ$. - 12. $\cos 60^{\circ} \tan^2 45^{\circ} + \frac{3}{4} \tan^2 30^{\circ} + \cos^2 30^{\circ} \sin 30^{\circ}$. - 13. $\frac{1}{3}\sin^2 60^\circ \frac{1}{2}\sec 60^\circ \tan^2 30^\circ + \frac{4}{3}\sin^2 45^\circ \tan^2 60^\circ$. - 14. If $\tan^2 45^\circ \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$, find x. - 15. Find x from the equation $$x \sin 30^{\circ} \cos^2 45^{\circ} = \frac{\cot^2 30^{\circ} \sec 60^{\circ} \tan 45^{\circ}}{\csc^2 45^{\circ} \csc 30^{\circ}}.$$ 37. Definition. The complement of an angle is its defect from a right angle. Two angles are said to be complementary when their sum is a right angle. Thus in every right-angled triangle, each acute angle is the complement of the other. For in the figure of the next article, if B is the right angle, the sum of A and C is 90° . .. $$C = 90^{\circ} - A$$, and $A = 90^{\circ} - C$. # Trigonometrical Ratios of Complementary Angles. 38. Let ABC be a right-angled triangle, of which B is the right angle; then the angles at A and C are complementary, so that $C=90^{\circ}$ A. $$\therefore \sin(90^\circ - A) = \sin C = \frac{AB}{AC} = \cos A;$$ and $$\cos (90^{\circ} - A) = \cos C = \frac{BC}{AC} = \sin A$$. Similarly, it may be proved that $$\tan (90^{\circ} - A) = \cot A$$, and $\sec (90^{\circ} - A) = \csc A$, $\cot (90^{\circ} - A) = \tan A$; $\cot (90^{\circ} - A) = \sec A$. 39. If we define the co-sine, co-tangent, co-secant, as the co-functions of the angle, the foregoing results may be embodied in a single statement: each function of an angle is equal to the corresponding co-function of its complement. As an illustration of this we may refer to Art. 35, from which it will be seen that $$\sin 60^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2};$$ $\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2};$ $\tan 60^{\circ} = \cot 30^{\circ} = \sqrt{3}.$ Example 1. Find a value of A when $\cos 2A = \sin 3A$. Since $$\cos 2A = \sin (90^\circ - 2A)$$, the equation becomes $\sin (90^{\circ} - 2A) = \sin 3A$; :. $$90^{\circ} - 2A = 3A$$; whence $$A = 18^{\circ}$$. Thus one value of A which satisfies the equation is $A=18^{\circ}$. In a later chapter we shall be able to solve the equation more completely, and shew that there are other values of A which satisfy it. Example 2. Prove that $\sec A \sec (90^{\circ} - A) = \tan A + \tan (90^{\circ} - A)$. Here it will be found easier to begin with the expression on the right side of the identity. The second side = $\tan A + \cot A$ $$= \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} = \frac{\sin^2 A + \cos^2 A}{\cos A \sin A}$$ $$= \frac{1}{\cos A \sin A}$$ $$= \sec A \csc A \sec A \sec (90^\circ - A).$$ ### EXAMPLES. IV. b. Find the complements of the following angles: 1. 67° 30′. 2. 25° 30″. 3. 10° 1′ 3″. 4. 45° - A. 5. $45^{\circ} + B$. 6. $30^{\circ} - B$. 7 - - 7. In a triangle C is 50° and A is the complement of 10°; find B. - 8. In a triangle A is the complement of 40° ; and B is the complement of 20° ; find C. Find a value of A in each of the following equations: - $\sin A = \cos 4A$. - 10. $\cos 3A = \sin 7A$. - $\tan A = \cot 3A$. 11. - 12. $\cot A = \tan A$. - 14. $\sec 5A = \csc A$. 13. $\cot A = \tan 2A$. Prove the following identities: - $\sin (90^{\circ} A) \cot (90^{\circ} A) = \sin A$. 15. - $\sin A \tan (90^{\circ} A) \sec (90^{\circ} A) = \cot A$. 16. - $\cos A \tan A \tan (90^{\circ} A) \csc (90^{\circ} A) = 1.$ 17. - $\sin A \cos (90^{\circ} A) + \cos A \sin (90^{\circ} A) = 1$ 18. - $\cos (90^{\circ} A) \csc (90^{\circ} A) = \tan A.$ 19. - √ 20. $\csc^2(90^\circ - A) = 1 + \sin^2 A \csc^2(90^\circ - A)$ - $\sin A \cot A \cot (90^{\circ} A) \sec (90^{\circ} A) = 1.$ 21. - √ 22. $\sec (90^{\circ} - A) - \cot A \cos (90^{\circ} - A) \tan (90^{\circ} - A) = \sin A$. - $\tan^2 A \sec^2 (90^\circ A) \sin^2 A \csc^2 (90^\circ A) = 1$. V 23. - $\tan (90^{\circ} A) + \cot (90^{\circ} A) = \csc A \csc (90^{\circ} A).$ $\sqrt{24}$. - $\frac{\sin(90^\circ A)}{\sec(90^\circ A)} \cdot \frac{\tan(90^\circ A)}{\cos A} = \cos A.$ v 25. - $\frac{\operatorname{cosec}^2 A \tan^2 A}{\cot \left(90^\circ A\right)} \cdot \frac{\cot A}{\sec^2 A} = \sec^2 \left(90^\circ A\right) 1,$ 26. - $\frac{\cot(90^{\circ} A)}{\csc^2 A} \cdot \frac{\sec A \cot^3 A}{\sin^2(90^{\circ} A)} = \sqrt{\tan^2 A + 1}.$ 27. - $\frac{\cos^2{(90^\circ A)}}{\text{vers } A} = 1 + \sin{(90^\circ A)}.$ 28. - $\frac{\cot^2 A \sin^2(90^\circ A)}{\cot A + \cos A} = \tan(90^\circ A) \cos A.$ 29. - If $x \sin (90^{\circ} A) \cot (90^{\circ} A) = \cos (90^{\circ} A)$, find x. 30. - 31. Find the value of x which will satisfy $\sec A \csc (90^{\circ} - A) - x \cot (90^{\circ} - A) = 1.$ #### The Use of Tables. 39_A. Tables have been constructed giving the numerical values of the trigonometrical ratios of all angles between 0° and 90° at suitable intervals. These are called the Tables of natural sines, cosines, tangents, In Four-Figure Tables the interval is usually one-tenth of a degree, or 6 minutes. When the number of minutes in an angle is not an exact multiple of 6, the differences in the trigonometrical ratios corresponding to 1, 2, 3, 4, 5 minutes are given in the difference columns printed at the right hand of the Tables [see page 378]. The way in which these differences are used will be explained by examples. We shall assume the properties established in Chap. IX, viz. that as the angle increases from 0° to 90° the sine, cosine, and tangent increase, while the cosine, cotangent, and cosecant decrease. Example 1. Find the sine of (i) 35° 18'; (ii) 35° 21'. The following extract is from the Table of sines on page 378. | | 0' | 6' | 12' | 18' | 24' | 30' | 36' | 42' | 48' | 54' | 1' | 2' | 3′ | 4' | 5' | |-----|------|------|------|------|------|------|------|------|------|------|----|----|----|----|----| | 35° | 5736 | 5750 | 5764 | 5779 | 5793 | 5807 | 5821 | 5835 | 5850 | 5964 | 2 | 5 | 7 | 10 | 12 | The above details are sufficient to give the sines of all angles between 35° and 36°, but it must be remembered that the values are fractions, given decimally to four figures, the decimal point being omitted. (i) Under the column headed 18' we find the digits 5779. Prefixing the decimal point we have $$\sin 35^{\circ} 18' = 5779.$$ (ii) Here the angle exceeds 35° 18′ by 3′. The Table gives the digit 7 in the column headed 3′. Bearing in mind that all the work is being carried to 4 places of decimals, this digit really represents a difference of 7 ten-thousandths, or '0007. Similarly the differences for 4′, 5′ must be taken as '0010 and '0012 respectively. The work stands as follows: From the Table $\sin 35^{\circ} 18' = .5779$ diff. for 3' = .0007 \therefore , by addition, $\sin 35^{\circ} 21' = .5786$ The ciphers are usually omitted in writing down the differences. Example 2. Find the value of cos 26 28'. | | | | | | | | | | | - | 1' 2' 3' ' F' 5' | |-----|------|------|------|------|------|------|------|------|------|------|------------------| | 26° | 8988 | 8980 | 8973 | 8965 | 8957 | 8949 | 8942 | 8934 | 8926 | 8918 | 1 3 4 5 6 | Here the angle is *greater* than 26° 24′ by 4′, therefore the cosine will be proportionally *less* than that of 26° 24′. $$\cos 26^{\circ} 24' = .8957$$ diff. for $$4'$$ 5 \therefore , by subtraction, $\cos 26^{\circ} 28' = \cdot 8952$ Example 3. Find θ from the equation $\tan \theta = 1.6666$. We must here look in the Table of tangents (page 383) for the angle whose tangent is nearest in value to 1.6666 and less than it. We shall find | | 0' | 6' | 12' | 18' | 24' | 30' | 36' | 42' | 48' | 54' | 1' 2' 3' | 4′ 5′ | |-----|--------|------|------|------|------|------|------|------|------|------|----------|-------| | 59° | 1.6643 | 6709 | 6775 | 6842 | 6909 | 6977 | 7045 | 7113 | 7182 | 7251 | 11 23 34 | 45 56 | $$\tan\,\theta = 1.6666$$ $$\tan 59^{\circ} = 1.6643$$ by subtraction, diff. = 23 Thus θ is greater than 59° by a number of minutes corresponding to the difference 23. From the Table, difference for 2' = 23, $$\therefore \ \theta = 59^{\circ}\,2'.$$ ### EXAMPLES. IV. c. Find from the Tables the values of the following Trigonometrical ratios: - 1. sin 24° 42′. - 2. sin 24° 47′. - 3. sin 36° 19′. - 4. cos 54° 16′. - 5. $\cos 60^{\circ} 50'$. - 6. cos 48° 20′. 7. $\tan 45^{\circ} 18'$. 8. tan 47° 25′. 9. tan 61° 3'. Find to the nearest minute the angles given by the following equations: - 10. $\sin A = .8839$. - 11. $\sin A = 4434$. - 12. $\cos \theta = 3221$. - 13. $\cos \theta = 8006$. - **14.** $\tan A = 1.2450$. - 15. $\tan A = .5711$. ### Easy Trigonometrical Equations. 40. We shall now give some examples in trigonometrical equations. Example 1. Find a value of A which satisfies the equation $4 \cos A = 3 \sec A$. By expressing the secant in terms of the cosine, we have $$4 \cos A = \frac{3}{\cos A},$$ $$4 \cos^{2} A = 3,$$ $$\cos A = \pm \frac{\sqrt{3}}{2}.$$ $$\therefore \cos A = \frac{\sqrt{3}}{2}.$$ $$(1),$$ $$\cos A = -\frac{\sqrt{3}}{2}.$$ $$(2).$$ or or Since $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$, we see from (1) that $A = 30^{\circ}$. The student will be able to understand the meaning of the negative result in (2) after he has read Chap. VIII. Example 2. Solve $3 \sec^2 \theta = 8 \tan \theta - 2$. $\sec^2 \theta = 1 + \tan^2 \theta$. Since we have $3(1 + \tan^2 \theta) = 8
\tan \theta - 2$, $3\tan^2\theta - 8\tan\theta + 5 = 0.$ This is a quadratic equation in which $\tan \theta$ is the unknown quantity, and it may be solved by any of the rules for solving quadratic equations. $(\tan \theta - 1) (3 \tan \theta - 5) = 0$, Thus $\tan \theta - 1 = 0$(1), therefore either or From (1), $\tan \theta = 1$, so that $\theta = 45^{\circ}$. From (2), $$\tan \theta = \frac{5}{3} = 1.6666 = \tan 59^{\circ} 2'$$ [see Ex. 3, p. 29_B], $\therefore \theta = 45^{\circ}$, or $59^{\circ} 2'$. When an equation involves more than two functions, it will usually be best to express each function in terms of the sine and cosine. $3 \tan \theta + \cot \theta = 5 \csc \theta$. E.vample. Solve $\frac{3\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{5}{\sin\theta},$ We have $3\sin^2\theta + \cos^2\theta = 5\cos\theta$, $3(1-\cos^2\theta)+\cos^2\theta=5\cos\theta,$ $2\cos^2\theta + 5\cos\theta - 3 = 0$, $(2\cos\theta - 1)(\cos\theta + 3) = 0;$ $2\cos\theta - 1 = 0$(1), therefore either $\cos \theta + 3 = 0$(2). or From (1), $\cos \theta = \frac{1}{2}$; so that $\theta = 60^{\circ}$. From (2), $\cos \theta = -3$, a result which must be rejected as *impossible*, because the numerical value of the cosine of an angle can never be greater than unity. [Art. 16.] #### EXAMPLES. IV. d. Find a solution of each of the following equations. (Tables must be used for Examples marked with an asterisk.) - $\tan \theta = 3 \cot \theta$. 1. $2\sin\theta = \csc\theta$. 2. $\sec \theta - \csc \theta = 0$. 3. $\sec \theta = 4 \cos \theta$. 4. $\csc^2 \theta = 4$. . 6. v 5. $4 \sin \theta = 3 \csc \theta$. $\tan \theta = 2 \sin \theta$. $1/2\cos\theta = \cot\theta$. 8. $\times 7.$ $\csc^2 \theta = 4 \cot^2 \theta$. $\sec^2 \theta = 2 \tan^2 \theta$. . 10. V 9. 12. $\sec^2\theta + \tan^2\theta = 7$. $\sec^2\theta = 3\tan^2\theta - 1$. /11. $2(\cos^2\theta - \sin^2\theta) = 1$. $\cot^2 \theta + \csc^2 \theta = 3$. 14. 13. $6\cos^2\theta = 1 + \cos\theta$. $2\cos^2\theta + 4\sin^2\theta = 3$. 16. 15. $2\sin^2\theta = 3\cos\theta$. $4\sin\theta = 12\sin^2\theta - 1.$ 18. 17. - *19. $\tan \theta = 4 - 3 \cot \theta$. - $\cos^2 \theta \sin^2 \theta = 2 5 \cos \theta$. 20. - $\cot \theta + \tan \theta = 2 \sec \theta$. 22. $4 \csc \theta + 2 \sin \theta = 9$. 21. - 24. $2\cos\theta + 2\sqrt{2} = 3\sec\theta$. $\tan \theta - \cot \theta = \csc \theta$. 23. - $2 \sin \theta \tan \theta + 1 = \tan \theta + 2 \sin \theta$. 25. - $6 \tan \theta 5\sqrt{3} \sec \theta + 12 \cot \theta = 0.$ 26. - *28. $\sec^2\theta + \tan^2\theta = 3 \tan \theta$. *27. $5 \tan \theta + 6 \cot \theta = 11$. ## MISCELLANEOUS EXAMPLES. A. 1. Express as the decimal of a right angle (1) 25° 37° 6·4°°; (2) 63° 21′ 36″. 2. Shew that $\sin A \cos A \tan A + \cos A \sin A \cot A = 1$. - 3. A ladder 29 ft. long just reaches a window at a height of 21 ft. from the ground: find the cosine and cosecant of the angle made by the ladder with the ground. - 4. If cosec $A = \frac{17}{15}$, find tan A and sec A. - 5. Shew that $\csc^2 A \cot A \cos A \csc A 1 = 0$. - 6. Reduce to sexagesimal measure (1) 17⁶ 18' 75"; (2) *0003 of a right angle. - 7. ABC is a triangle in which B is a right angle; if c=9, a=40, find b, cot A, sec A, sec C. - 3. Which of the following statements are possible and which impossible? (1) $4 \sin \theta = 1$; (2) $2 \sec \theta = 1$; (3) $7 \tan \theta = 40$. 9. Prove that $\cos \theta \operatorname{vers} \theta (\sec \theta + 1) = \sin^2 \theta$. 10. Express sec a and cosec a in terms of cot a. 11. Find the numerical value of $3\tan^2 30^\circ + \frac{1}{4}\sec 60^\circ + 5\cot^2 45^\circ - \frac{2}{3}\sin^2 60^\circ$. 12. If $\tan a = \frac{m}{n}$, find $\sin a$ and $\sec a$. 13. If m sexagesimal minutes are equivalent to n centesimal minutes, prove that m=54n. - 14. If $\sin A = \frac{4}{5}$, prove that $\tan A + \sec A = 3$, when A is an acute angle. - **15.** Shew that $\cot (90^{\circ} A) \cot A \cos (90^{\circ} A) \tan (90^{\circ} A) = \cos A$. - 16. PQR is a triangle in which P is a right angle; if PQ=21, PR=20, find tan Q and cosec Q. - 17. Show that $(\tan a \cot a) \sin a \cos a = 1 2 \cos^2 a$. - 18. Find a value of θ which satisfies the equation see $6\theta = \csc 3\theta$. - 19. Prove that $\tan^2 60^\circ 2 \tan^2 45^\circ = \cot^2 30^\circ 2 \sin^2 30^\circ \frac{3}{4} \csc^2 45^\circ.$ - \checkmark 20. Solve the equations: (1) $3\sin\theta = 2\cos^2\theta$; (2) $5\tan\theta - \sec^2\theta = 3$. - **21.** Prove that $1+2\sec^2 A \tan^2 A \sec^4 A = \tan^4 A = 0$. - 22. In the equation $$6\sin^2\theta \quad 11\sin\theta + 4 = 0,$$ shew that one value of θ is impossible, and find the other value. 23. In a triangle ABC right-angled at C, prove that $$\tan A + \tan B = \frac{c^2}{ab}.$$ - 24. If $\cot A = c$, shew that $c + c^{-1} = \sec A$ cosec A. - 25. Solve the equation $$3\sin^2\theta + 5\sin\theta = 2$$. ### CHAPTER V. #### SOLUTION OF RIGHT-ANGLED TRIANGLES, 42. Every triangle has six parts, namely, three sides and three angles. In Trigonometry it is usual to denote the three angles by the capital letters A, B, C, and the lengths of the sides respectively opposite to these angles by the letters a, b, c. It must be understood that a, b, c are numerical quantities expressing the number of units of length contained in the three sides. 43. We know from Geometry that it is always possible to construct a triangle when any three parts are given, provided that one at least of the parts is a side. Similarly, if the values of suitable parts of a triangle be given, we can by Trigonometry find the remaining parts. The process by which this is effected is called the Solution of the triangle. The general solution of triangles will be discussed at a later stage; in this chapter we shall confine our attention to rightangled triangles. From Geometry, we know that when a triangle is rightangled, if any two sides are given the third can be found. Thus in the figure of the next article, where ABC is a triangle rightangled at A, we have $a^2 = b^2 + c^2$; whence if any two of the three quantities a, b, c are given, the third may be determined. Again, the two acute angles are complementary, so that if one is given the other is also known. Hence in the solution of right-angled triangles there are really only two cases to be considered: - when any two sides are given; - II. when one side and one acute angle are given. 45. Case I. To solve a right-angled triangle when two sides are given. Let ABC be a right-angled triangle, of which A is the right angle, and suppose that any two sides are given; then the third side may be found from the equation $$a^2 = b^2 + c^2$$. Also $$\cos C = \frac{b}{a}$$, and $B = 90^{\circ} - C$; whence C and B may be obtained. Example. Given $B = 90^{\circ}$, a = 20, b = 40, solve the triangle. Here $$c^2 = b^2 - a^2$$ $= 1600 - 400 = 1200$; $\therefore c = 20 \sqrt{3}$. Also $\sin A = \frac{a}{b} = \frac{20}{40} = \frac{1}{2}$; $\therefore A = 30^\circ$. And $C = 90^\circ - A = 90^\circ - 30^\circ = 60^\circ$. The solution of a trigonometrical problem may often be obtained in more than one way. Here the triangle can be solved without using the geometrical property of a right-angled triangle. Another solution may be given as follows: $$\cos C = \frac{a}{b} = \frac{20}{40} = \frac{1}{2};$$ $$\therefore C = 60^{\circ}.$$ And $$A = 90^{\circ} - C = 90^{\circ} - 60^{\circ} = 30^{\circ}.$$ Also $$\frac{c}{40} = \cos A = \cos 30^{\circ} = \frac{\sqrt{3}}{2};$$ $$\therefore c = 20 \sqrt{3}.$$ 46. CASE 11. To solve a right-angled triangle when one side and one acute angle are given. Let ABC be a right-angled triangle of which A is the right angle, and suppose one side b and one neute angle C are given; then $$B = 90^{\circ} - \ell', \quad \frac{a}{b} = \sec \ell', \quad \frac{e}{b} = \tan \ell';$$ whence B, a, c may be determined. Example 1. Given $B=90^{\circ}$, $A=30^{\circ}$, c=5, solve the triangle. We have $$C = 90^{\circ} - A = 90^{\circ} - 30^{\circ} - 60^{\circ}$$. Also $$\frac{a}{5} = \tan 30^{\circ};$$ $\therefore a = 5 \tan 30^{\circ} = \frac{5}{\sqrt{3}}$ $= \frac{5}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{5}{3} \times \frac{\sqrt{3}}{3}.$ Again, $\frac{b}{5} = \sec 30;$ $\therefore b = 5 \sec 30^{\circ} = 5 + \frac{2}{\sqrt{3}} = \frac{10}{\sqrt{3}} = \frac{10}{3} \times \frac{\sqrt{3}}{3}.$ Note. The student should observe that in each case we write down a ratio which connects the side we are finding with that whose value is giren, and a knowledge of the ratios of the given angle enables us to complete the solution. Example 2. If $C=90^\circ$, $B=25^\circ43'$, and c=100, solve the triangle by means of Mathematical Tables. Here $$A = 90^{\circ} - B$$ $= 90^{\circ} - 25^{\circ} 43' = 64^{\circ} 17'.$ Now $\frac{a}{c} = \cos B$; that is, $\frac{a}{100} = \cos 25^{\circ} 43'$; $\therefore a = 100 \cos 25^{\circ} 43'$ $= 100 \times 9012 = 90 \cdot 12$, from the Tables. Also $\frac{b}{c} = \tan B$; $\therefore b = 90.12 \times \tan 25^{\circ} 43' = 90.12 \times .4817 - 43.41.$ ### EXAMPLES. V. a. (Tables must be used for Examples marked with an asterisk.) Solve the triangles in which the following parts are given: - \triangleright 1. $A = 90^{\circ}$, a = 4, $b = 2\sqrt{3}$. \triangleright 2. c = 6, b = 12, $B = 90^{\circ}$. - 3. $C = 90^{\circ}$, b = 12, $a = 4\sqrt{3}$. 4. a = 60, b = 30, $A = 90^{\circ}$. - 5. a = 20, c = 20, $B = 90^{\circ}$. 6. $a = 5\sqrt{3}$, b = 15, $c' = 90^{\circ}$. - 7. b=c=2, $A=90^{\circ}$. 8. $2c=b=6\sqrt{3}$, $B=90^{\circ}$. - 9. $C = 90^{\circ}$, $a = 9\sqrt{3}$, $A = 30^{\circ}$. *10. $A = 90^{\circ}$, $B = 25^{\circ}$, a = 4. - *13. $B=90^{\circ}$, $C=37^{\circ}$, b=100. 14. $A=30^{\circ}$, $B=60^{\circ}$, $b=20\sqrt{3}$. - **15.** $B = C = 45^{\circ}$, c = 4. **16.** $2B = C 60^{\circ}$, a = 8. - 17. If $C = 90^{\circ}$, cot A = 07,
b = 49, find a. - **18.** If $\ell' = 90^{\circ}$, $A = 38^{\circ} 19'$, c = 50, find a; given $\sin 38^{\circ} 19' = 62$. - *19. If a = 100, B = 90, $C = 40^{\circ} 51'$, find c, - *20. If b=200, A=90, C=78/12, find a to the nearest integer. - 21. If $B = 90^{\circ}$, $A = 36^{\circ}$, c = 100, solve the triangle; given $\tan 36 = 73$, $\sec 36^{\circ} = 1.24$. - 22. If $A = 90^{\circ}$, c = 37, a = 100, solve the triangle; given $\sin 21^{\circ} 43' = 37$, $\cos 21^{\circ} 43' = 93$. - *23. If $A = 90^{\circ}$, $B = 39^{\circ} 24'$, b = 25, solve the triangle. - *24. If $C=90^{\circ}$, a=225, b=272, solve the triangle. - *25. If $C=90^{\circ}$, b=22.75, c=25, solve the triangle. - 47. It will be found that all the varieties of the solution of right-angled triangles which can arise are either included in the two cases of Arts. 45 and 46, or in some modification of them. Sometimes the solution of a problem may be obtained by solving two right-angled triangles. The two examples we give as illustrations will in various forms be frequently met with in subsequent chapters. Example 1. In the triangle ABC, the angles A and B are equal to 30° and 135° respectively, and the side AB is 100 feet; find the length of the perpendicular from C upon AB produced. Draw CD perpendicular to AB produced, and let CD = x. Then $$\angle CBD = 180^{\circ} - 135^{\circ} = 45^{\circ}$$; $$\therefore BD = CD = x.$$ Now in the right-angled triangle ADC, $$\frac{CD}{AD} = \tan DAC = \tan 30^{\circ};$$ that is, $$\frac{x}{x+100} = \frac{1}{\sqrt{3}};$$ $$\therefore x\sqrt{3} = x + 100;$$ $$x(\sqrt{3}-1) = 100,$$ $$x = \frac{100}{\sqrt{3}-1} = \frac{100(\sqrt{3}+1)}{3-1} = 50(\sqrt{3}+1);$$ $$\therefore x = 50 \times 2.732.$$ Thus the distance required is 136.6 feet. Example 2. In the triangle ABC, a=9.6 cm., c=5.4 cm., $B=37^{\circ}$. Find the perpendicular from A on BC, and hence find A and C to the nearest degree. In the right-angled triangle ABD, $$\frac{BD}{BA} = \cos ABD = \cos 37^{\circ};$$ $$\therefore BD = BA \cos 37^{\circ}$$ $$= 5.4 \times .7986 \text{ (from the Tables)}$$ $$= 4.31 \text{ cm.}$$ Also $$\frac{AD}{AB} = \sin ABD = \sin 37^{\circ};$$ $$\therefore AD = AB \sin 37^{\circ} = 5.4 \times .6018 \text{ (from the Tables)}$$ $$= 3.25 \text{ cm.}$$ But $$CD = BC - BD = 9.6 - 4.31 = 5.29 \text{ cm.}$$; ... from the right-angled triangle ACD, $$\tan ACD = \frac{AD}{DC} = \frac{3.25}{5.29} = .6144$$. But from the Tables, $\tan 31^{\circ} = .6009$, $\tan 32^{\circ} = .6249$; \therefore $\angle ACD = 32^{\circ}$, to the nearest degree, and $\angle BAC = 180^{\circ} - 37^{\circ} - 32^{\circ} = 111^{\circ}.$ Thus AD = 3.25 cm., $\angle A = 111^{\circ}$, $\angle C = 32^{\circ}$. #### EXAMPLES. V. b. (Tables must be used for Examples marked with an asterisk.) 1. ABC is a triangle, and BD is perpendicular to AC produced: find BD, given $$A = 30^{\circ}$$, $C = 120^{\circ}$, $AC = 20$. 2. If BD is perpendicular to the base AC of a triangle ABC, find a and c, given $$A = 30^{\circ}$$, $C = 45^{\circ}$, $BD = 10$. - 3. In the triangle ABC, AD is drawn perpendicular to BC making BD equal to 15 ft.: find the lengths of AB, AC, and AD, given that B and C are equal to 30° and 60° respectively. - **4.** In a right-angled triangle PQR, find the segments of the hypotenuse PR made by the perpendicular from Q; given $$QR=8$$, $\angle QRP=60^{\circ}$, $\angle QPR=30^{\circ}$. - *5. If PQ is drawn perpendicular to the straight line QRS, find RS, given PQ=36, $\angle RPQ=35^{\circ}$, $\angle SPQ=53^{\circ}$. - *6. If PQ is drawn perpendicular to the straight line QRS, find RS, given PQ=20, $\angle PRS=135^{\circ}$, $\angle PSR=25^{\circ}$. - 7. In the triangle ABC, the angles B and C are equal to 45° and 120° respectively; if a=40, find the length of the perpendicular from A on BC produced. - *8. If CD is drawn perpendicular to the straight line DBA, find DC and BD, given $$AB = 41.24$$, $\angle CBD = 45^{\circ}$, $\angle CAB = 35^{\circ} 18'$. *9. In a triangle ABC, AB=20, BC=33, $\angle B=42^{\circ}$, find the perpendicular from A on BC, and the angle C. #### CHAPTER VI. #### EASY PROBLEMS. 48. The principles explained in the previous chapters may now be applied to the solution of problems in heights and distances. It will be assumed that by the use of suitable instruments the necessary lines and angles can be measured with sufficient accuracy for the purposes required. After the practice afforded by the examples in the last chapter, the student should be able to write down at once any side of a right-angled triangle in terms of another through the medium of the functions of either acute angle. In the present and subsequent chapters it is of great importance to acquire readiness in this respect. For instance, from the adjoining figure, we have $a = c \sin A$, $a = c \cos B$, $a = b \cot B$, $a = b \tan A$, $c = a \sec B$, $b = a \tan B$. These relations are not to be committed to memory but in each case should be read off from the figure. There are several other similar relations connecting the parts of the above triangle, and the student should practise himself in obtaining them quickly. Example. Q, R, T are three points in a straight line, and TP is drawn perpendicular to QT. If PT=a, $\angle PQT=\beta$, $\angle PRT=2\beta$, express the lengths of all the lines of the figure in terms of a and β . By Euc. 1. 32, $$\angle QPR = \angle PRT - \angle PQR;$$ $\therefore \angle QPR = 2\beta - \beta = \beta = \angle PQR;$ $\therefore QR = PR.$ In the right-angled triangle PRT, $$PR = a \csc 2\beta$$; :: $QR = a \csc 2\beta$. Also $$TR = a \cot 2\beta$$. Lastly, in the right-angled triangle PQT, $$QT = a \cot \beta$$. $PQ = a \csc \beta$. 49. Angles of elevation and depression. Let OP be a horizontal line in the same vertical plane as an object Q, and let OQ be joined. In Fig. 1, where the object Q is above the horizontal line OP, the angle POQ is called the **angle of elevation** of the object Q as seen from the point O. In Fig. 2, where the object Q is below the horizontal line OP, the angle POQ is called the **angle of depression** of the object Q as seen from the point O. CHAP. Example I. A flagstaff stands on a horizontal plane, and from a point on the ground at a distance of 30 ft. its angle of elevation is 60°: find its height. Let AB be the flagstaff, C the point of observation; then $$AB = BC \tan 60^{\circ} = 30 \sqrt{3}$$ = $30 \times 1.732 = 51.96$, Thus the height is 51.96 ft. ### EXAMPLES. VI. a. [For Examples in the use of Tables see page 48_A.] - 1. The angle of elevation of the top of a chimney at a distance of 300 feet is 30°: find its height. - 2. From a ship's masthead 160 feet high the angle of depression of a boat is observed to be 30° : find its distance from the ship. - 3. Find the angle of elevation of the sun when the shadow of a pole 6 feet high is $2\sqrt{3}$ feet long. - 4. At a distance 86.6 feet from the foot of a tower the angle of elevation of the top is 30°. Find the height of the tower and the observer's distance from the top. - 5. A ladder 45 feet long just reaches the top of a wall. If the ladder makes an angle of 60° with the wall, find the height of the wall, and the distance of the foot of the ladder from the wall. - 6. Two masts are 60 feet and 40 feet high, and the line joining their tops makes an angle of $33^{\circ} 41'$ with the horizon: find their distance apart, given $\cot 33^{\circ} 41' = 1.5$. - 7. Find the distance of the observer from the top of a cliff which is 132 yards high, given that the angle of elevation is 41° 18′, and that sin 41° 18′= 66. - 8. One chimney is 30 yards higher than another. A person standing at a distance of 100 yards from the lower observes their tops to be in a line inclined at an angle of 27° 2' to the horizon: find their heights, given $\tan 27^{\circ}$ 2' = 51. 130° 60 В Example II. From the foot of a tower the angle of elevation of the top of a column is 60°, and from the top of the tower, which is 50 ft. high, the angle of elevation is 30°: find the height of the column. Let AB denote the column and CD the tower; draw CE parallel to DB. Let $$AB = x$$; then $$AE = AB - BE = x - 50.$$ Let $$DB = CE = y$$. From the right-angled triangle ADB, $$y = x \cot 60^\circ = \frac{x}{\sqrt{3}}$$. From the right-angled triangle ACE, $$y = (x - 50) \cot 30^{\circ} = \sqrt{3} (x - 50).$$ $$\therefore \frac{x}{\sqrt{3}} = \sqrt{3} (x - 50),$$ $x = 3 (x - 50);$ $x = 75.$ whence Thus the column is 75 ft. high. - 9. The angle of elevation of the top of a tower is 30°; on walking 100 yards nearer the elevation is found to be 60°; find the height of the tower. - 10. A flagstaff stands upon the top of a building; at a distance of 40 feet the angles of elevation of the tops of the flagstaff and building are 60° and 30°: find the length of the flagstaff. - 11. The angles of elevation of a spire at two places due east of it and 200 feet apart are 45° and 30°: find the height of the spire. - 12. From the foot of a post the elevation of the top of a steeple is 45°, and from the top of the post, which is 30 feet high, the elevation is 30°; find the height and distance of the steeple. - 13. The height of a hill is 3300 feet above the level of a horizontal plane. From a point A on this plane the angular elevation of the top of the hill is 60°. A balloon rises from A and ascends vertically upwards at a uniform rate; after 5 minutes the angular elevation of the top of the hill to an observer in the balloon is 30°; find the rate of the balloon's ascent in miles per hour. Example III. From the top of a cliff 150 ft. high the angles of depression of two boats which are due South of the observer are 15° and 75°: find their distance apart, having given $$\cot 15^{\circ} = 2 + \sqrt{3}$$ and $\cot 75^{\circ} = 2 - \sqrt{3}$. Let OA represent the cliff, B and C the boats.
Let OP be a horizontal line through O; then $$\angle POC = 15^{\circ} \text{ and } \angle POB = 75^{\circ};$$ $\therefore \angle OCA = 15^{\circ} \text{ and } \angle OBA = 75^{\circ}.$ Let CB = x, AB = y; then CA = x + y. From the right-angled triangle OBA, $$y = 150 \cot 75^{\circ} = 150 (2 - 8/3) = 300 - 150 8/3.$$ From the right-angled triangle OCA, $$x+y=150 \cot 15^{\circ}=150 (2+\sqrt{3})=300+150 \sqrt{3}$$. By subtraction, $x = 300 \sqrt{3} = 519.6$. Thus the distance between the boats is 519.6 ft. - 14. From the top of a monument 100 feet high, the angles of depression of two objects on the ground due west of the monument are 45° and 30°: find the distance between them. - 15. The angles of depression of the top and foot of a tower seen from a monument 96 feet high are 30° and 60°: find the height of the tower. - 16. From the top of a cliff 150 feet high the angles of depression of two boats at sea, each due north of the observer, are 30° and 15°: how far are the boats apart? - 17. From the top of a hill the angles of depression of two consecutive milestones on a level road running due south from the observer are 45° and 22° respectively. If cot 22°=2.475 find the height of the hill in yards. - 18. From the top of a lighthouse 80 yards above the horizon the angles of depression of two rocks due west of the observer are 75° and 15° : find their distance apart, given $\cot 75^{\circ} = 268$ and $\cot 15^{\circ} = 3732$. 50. Trigonometrical Problems sometimes require a knowledge of the Points of the Mariner's Compass, which we shall now explain. In the above figure, it will be seen that 32 points are taken at equal distances on the circumference of a circle, so that the arc between any two consecutive points subtends at the centre of the circle an angle equal to $\frac{360}{32}$ °, that is to $11\frac{1}{4}$ °. The points North, South, East, West are called the Cardinal Points, and with reference to them the other points receive their names. The student will have no difficulty in learning these if he will carefully notice the arrangement in any one of the principal quadrants. 51. Sometimes a slightly different notation is used; thus N. 11½° E. means a direction 11½° east of north, and is therefore the same as N. by E. Again S.W. by S. is 3 points from south and may be expressed by S. 33¾° W., or since it is 5 points from west it can also be expressed by W. 56¼° S. In each of these cases it will be seen that the angular measurement is made from the direction which is first mentioned. И. К. Е. Т. 4 - 52. The angle between the directions of any two points is obtained by multiplying $11\frac{1}{4}^{\circ}$ by the number of intervals between the points. Thus between S. by W. and W.S.W. there are 5 intervals and the angle is $56\frac{1}{4}^{\circ}$; between N.E. by E. and S.E. there are 7 intervals and the angle is $78\frac{3}{4}^{\circ}$. - 53. If B lies in a certain direction with respect to A, it is said to bear in that direction from A; thus Birmingham bears N.W. of London, and from Birmingham the bearing of London is S.E. Example 1. From a lighthouse L two ships A and B are observed in directions S.W. and 15° East of South respectively. At the same time B is observed from A in a S.E. direction. If LA is 4 miles find the distance between the ships. Draw LS' due South; then from the bearings of the two ships, $$\angle ALS' = 45^{\circ}$$, $\angle BLS' = 15^{\circ}$, so that $\angle ALB = 60^{\circ}$. Through A draw a line NS pointing North and South; then $$\angle NAL = \angle ALS' = 45^{\circ}$$ and $\angle BAS=45^{\circ}$, since B bears S.E. from A; hence $$\angle BAL = 180^{\circ} - 45^{\circ} - 45^{\circ} = 90^{\circ}$$. In the right-angled triangle ABL, AB=AL tan ALB=4 tan 60° $$-4\sqrt{3} = 6.928$$. Thus the distance between the ships is 6:928 miles. Example 2. At 9 A.M. a ship which is sailing in a direction E. 37° S. at the rate of 8 miles an hour observes a fort in a direction 53° North of East. At 11 A.M. the fort is observed to bear N. 20° W.: find the distance of the fort from the ship at each observation. Let A and C be the first and second positions of the ship; B the fort, Through A draw lines towards the cardinal points of the compass. From the observations made $$\angle EAC = 37^{\circ}$$, $\angle EAB = 53^{\circ}$, so that $\angle BAC = 90^{\circ}$. Through C draw CN' towards the North; then $\angle BCN' = 20^{\circ}$, for the bearing of the fort from C is N. 20° W. Also $$\angle ACN' = \angle CAS = 90^{\circ} - 37^{\circ} = 53^{\circ};$$ $\therefore \angle ACB = \angle ACN' - \angle BCN' = 53^{\circ} - 20^{\circ} = 33^{\circ}.$ In the right-angled triangle ACB, $$AB = AC \tan ACB = 16 \tan 33^{\circ} = 16 \div 6494$$, from the Tables; = 10:3904. Again $$BC = AC \sec ACB = 16 \sec 33^{\circ} + 16 \times 1.1924 = 19.0784$$, Thus the distances are 10.39 and 19.08 miles nearly. ### EXAMPLES. VI. b. (For Examples to be solved by the use of Tables see page 48,) - 1. A person walking due E. observes two objects both in the N.E. direction. After walking 800 yards one of the objects is due N. of him, and the other lies N.W.; how far was he from the objects at first? - 2. Sailing due E. I observe two ships lying at anchor due S.; after sailing 3 miles the ships bear 60° and 30° S. of W.; how far are they now distant from me? - 3. Two vessels leave harbour at noon in directions W. 28°S, and E. 62°S, at the rates 10 and 10½ miles per hour respectively. Find their distance apart at 2 P.M. - 4. A lighthouse facing N. sends out a fan-shaped beam extending from N.E. to N.W. A steamer sailing due W. first sees the light when 5 miles away from the lighthouse and continues to see it for $30\sqrt{2}$ minutes. What is the speed of the steamer? - 5. A ship sailing due S. observes two lighthouses in a line exactly W. After sailing 10 miles they are respectively N.W. and W.N.W.; find their distances from the position of the ship at the first observation. - 6. Two vessels sail from port in directions N. 35° W. and S. 55° W. at the rates of 8 and $8\sqrt{3}$ miles per hour respectively. Find their distance apart at the end of an hour, and the bearing of the second vessel as observed from the first. - 7. A vessel sailing S.S.W. is observed at noon to be E.S.E. from a lighthouse 4 miles away. At 1 p.m. the vessel is due S. of the lighthouse: find the rate at which the vessel is sailing. Given $\tan 67\frac{1}{5}^{\circ} = 2.414$. - **8.** A, B, C are three places such that from A the bearing of C is N. 10° W., and the bearing of B is N. 50° E.; from B the bearing of C is N. 40° W. If the distance between B and C is 10 miles, find the distances of B and C from A. - 9. A ship steaming due E. sights at noon a lighthouse bearing N.E., 15 miles distant; at 1.30 p.m. the lighthouse bears N.W. How many knots per day is the ship making? Given 60 knots=69 miles. - 10. At 10 o'clock forenoon a coaster is observed from a lighthouse to bear 9 miles away to N.E. and to be holding a south-easterly course; at 1 p.m. the bearing of the coaster is 15°S. of E. Find the rate of the coaster's sailing and its distance from the lighthouse at the time of the second observation. - 11. The distance between two lighthouses, A and B, is 12 miles and the line joining them bears E. 15° N. At midnight a vessel which is sailing S. 15° E. at the rate of 10 miles per hour is N.E. of A and N.W. of B: find to the nearest minute when the vessel crosses the line joining the lighthouses. - 12. From A to B, two stations of a railway, the line runs W.S.W. At A a person observes that two spires, whose distance apart is 1.5 miles, are in the same line which bears N.N.W. At B their bearings are N. $7\frac{1}{2}^{\circ}$ E. and N. $37\frac{1}{2}^{\circ}$ E. Find the rate of a train which runs from A to B in 2 minutes. #### EXAMPLES. VI. c. [In the following Examples Four-Figure Tables will be required.] - 1. At a distance of 83 yards the angle of elevation of the top of a chimney stack is 23° 44′; find its height to the nearest foot. - 2. The shadow cast by a spire at a time when the angular elevation of the sun in 63° is 173 feet; find the height of the spire. - *\(^3\) 3. A balloon held captive by a rope 200 metres long has drifted with the wind till the angle of elevation as observed from the place of ascent is 54°. How high is the balloon above the ground? - 4. A coal seam is inclined at an angle of 23° to the horizontal. Find, to the nearest foot, the distance below the level of a man who has walked 500 yards down the seam from the point where it meets the surface. - 5. A man standing immediately opposite to a telegraph post on a railway notices that the line joining this post and the next one subtends an angle of 73° 18′. Assuming that there are 23 telegraph posts to the mile, find his distance from the first post. - 6. The middle point of one side of a square is joined to one of the opposite corners of the square; find the size of the two angles formed at this corner. - 7. Find without any measurement the angles of an isosceles triangle each of whose equal sides is three times the base. - 8. The angles of elevation of a spire at two places due east of it, and 160 feet apart, are 45° and 21° 48′: find the height of the spire to the nearest foot. - 9. The angle of elevation of the top of a tower is 27° 12′, and on walking 100 yards nearer the elevation is found to be 54° 24′; find the height of the tower to the nearest foot. - 10. From the top of å hill the angles of depression of two consecutive milestones on a level road running due east from the observer are 55° and 16° 42′ respectively; find the height of the hill to the nearest yard. - 11. A trench is to be dug to measure 15 feet across the top, 9 feet across the bottom, and of uniform depth 8 feet; if one side is inclined at 12° to the vertical, what must be the inclination of the other? - 12. Two towers, A and B, on a level plain subtend an
angle of 90° at an observer's eye; he walks directly towards B a distance of 630 metres and then finds the angle subtended to be 143° 24′. Find the distance of A from each position of the observer. - 13. From the roof of a house 30 feet high the angle of elevation of the top of a monument is 42°, and the angle of depression of its foot is 17°. Find its height. - 14. From a point on a horizontal plane I find the angle of elevation of the top of a neighbouring hill to be 14°; after walking 700 metres in a straight line towards the hill, I find the elevation to be 35°. Find the height of the hill. - 15. At noon a ship which is sailing a straight course due W. at 10 miles an hour observes a lighthouse 32° W. of North. At 1.30 p.m. the lighthouse bears 58° E. of North; find the distance of the lighthouse from the first position of the ship. - 16. From two positions, 2 kilometres apart, on a straight road running East and West a house bears 52° W. of N. and 38° E. of N. respectively. Find to the nearest metre how far the house is from the road. - 17. A ship sailing due E. observes that a lighthouse known to be 12 miles distant bears N. 34° E. at 3 r.m., and N. 56° W. at 4.10 r.m. How many miles a day is the ship making? - 18. A ship which was lying $2\frac{1}{2}$ miles N.W. of a shore battery with an effective range of 4 miles, steers a straight course under cover of darkness until she is due N. of the battery, and just out of range. In what direction does she steam? - 19. At 10 A.M. a ship which is sailing E. 41° S. at the rate of 10 miles an hour observes a fort bearing 49° N. of E. At noon the bearing of the fort is N. 15° E.; find the distance of the fort from the ship at each observation. # CHAPTER VII. #### RADIAN OR CIRCULAR MEASURE. - 54. We shall now return to the system of measuring angles which was briefly referred to in Art. 6. In this system angles are not measured in terms of a submultiple of the right angle, as in the sexagesimal and centesimal methods, but a certain angle known as a radian is taken as the standard unit, in terms of which all other angles are measured. - 55. DEFINITION. A radian is the angle subtended at the centre of any circle by an arc equal in length to the radius of the circle. In the above figure, ABC is a circle, and O its centre. If on the circumference we measure an arc AB equal to the radius and join OA, OB, the angle AOB is a radian. 56. In any system of measurement it is essential that the unit should be always the same. In order to shew that a radian, constructed according to the above definition, is of constant magnitude, we must first establish an important property of the circle. CHAP. 57. The circumferences of circles are to one another as their radii. Take any two circles whose radii are r_1 and r_2 , and in each circle let a regular polygon of n sides be described. Let A_1B_1 be a side of the first, A_2B_2 a side of the second polygon, and let their lengths be denoted by a_1 , a_2 . Join their extremities to O_1 and O_2 the centres of the circles. We thus obtain two isosceles triangles whose vertical angles are equal, each being $\frac{1}{a_1}$ of four right angles. Hence the triangles are equiangular, and therefore we have by Euc. vi. 4, that is, $$\begin{split} \frac{A_1B_1}{O_1A_1} &= \frac{A_2B_2}{O_2A_2};\\ t_1 &= \frac{a_2}{r_2};\\ \vdots &= \frac{na_2}{r_1} = \frac{na_2}{r_2};\\ that is, &\qquad \frac{p_1}{r_1} = \frac{p_2}{r_2}, \end{split}$$ where p_1 and p_2 are the perimeters of the polygons. This is true whatever be the number of sides in the polygons. By taking n sufficiently large we can make the perimeters of the two polygons differ from the circumferences of the corresponding circles by as small a quantity as we please; so that ultimately $$\frac{c_1}{r_1} = \frac{c_2}{r_2},$$ where c_1 and c_2 are the circumferences of the two circles. 58. It thus appears that the ratio of the circumference of a circle to its radius is the same whatever be the size of the circle; that is, in all circles $\frac{circumference}{diameter}$ is a constant quantity. This constant is incommensurable and is always denoted by the Greek letter π . Though its numerical value cannot be found exactly, it is shewn in a later part of the subject that it can be obtained to any degree of approximation. To ten decimal places its value is 3.1415926536. In many cases $\pi = \frac{22}{7}$, which is true to two decimal places, is a sufficiently close approximation; where greater accuracy is required the value 3.1416 may be used. **59.** If c denote the circumference of the circle whose radius is r, we have $$\frac{\text{circumference}}{\text{diameter}} = \pi;$$ $$\therefore \frac{c}{2r} = \pi,$$ $$c = 2\pi r.$$ 01° 60. To prove that all radians are equal. Draw any circle; let O be its centre and OA a radius. Let the arc AB be measured equal in length to OA. Join OB; then AOB is a radian. Produce AO to meet the circumference in C. By Euc. vi. 33, angles at the centre of a circle are proportional to the arcs on which they stand; hence $$\frac{\angle AOB}{\text{two right angles}} = \frac{\text{arc } AB}{\text{arc } ABC}$$ $$= \frac{\text{radius}}{\text{semi-circumference}} = \frac{r}{\pi r} = \frac{1}{\pi}$$ which is constant; that is, a radian always bears the same ratio to two right angles, and therefore is a constant angle. - 61. Since a radian is constant it is taken as a standard unit, and the *number of radians* contained in any angle is spoken of as its radian measure or circular measure. [See Art. 71.] In this system, an angle is usually denoted by a *mere number*, the unit being implied. Thus when we speak of an angle 2.5, it is understood that its radian measure is 2.5, or, in other words, that the angle contains $2\frac{1}{3}$ radians. - 62. To find the radian measure of a right angle. Let AOC be a right angle at the centre of a circle, and AOB a radian; then the radian measure of $\angle AOC$ $$= \frac{\frac{2 AOC}{2 AOB}}{\frac{1}{2 AOB}} = \frac{\text{arc } AC}{\text{arc } AB}$$ $$= \frac{\frac{1}{4} \text{ (circumference)}}{\text{radius}} = \frac{\frac{1}{4} (2\pi r)}{r}$$ $$= \frac{\pi}{2};$$ that is, a right angle contains $\frac{\pi}{2}$ radians. 63. To find the number of degrees in a radian. From the last article it follows that $$\pi$$ radians=2 right angles=180 degrees. $$\therefore$$ a radian = $\frac{180}{\pi}$ degrees. By division we find that $\frac{1}{\pi}$ = 31831 nearly; hence approximately, a radian = $180 \times 31831 = 57.2958$ degrees. 64. The formula connecting the sexagesimal and radian measures of an angle, is a useful result which enables us to pass readily from one system to the other. Example. Express 75° in radian measure, and $\frac{\pi}{54}$ in sexage simal measure. (1) Since 180 degrees = π radians, 75 degrees $$=\frac{75}{180}\pi$$ radians $=\frac{5\pi}{12}$ radians. Thus the radian measure is $\frac{5\pi}{12}$. (2) Since π radians = 180 degrees, $$\frac{\pi}{54}$$ radians = $\frac{180}{54}$ degrees. Thus the angle $=\frac{10}{3}$ degrees $=3^{\circ}20'$. 65. It may be well to remind the student that the symbol π always denotes a number, viz. 3:14159.... When the symbol stands alone, without reference to any angle, there can be no ambiguity; but even when π is used to denote an angle, it must still be remembered that π is a number, namely, the number of radians in two right angles. Note. It is not uncommon for beginners to make statements such as " $\pi=180$ " or " $\frac{\pi}{2}=90$." Without some modification this mode of expression is quite incorrect. It is true that π radians are equal to 180 degrees, but the statement ' $\pi=180$ ' is no more correct than the statement "20=1" to denote the equivalence of 20 shillings and 1 sovereign. / 66. If the number of degrees and radians in an angle be represented by D and θ respectively, to prove that $$\frac{D}{180} = \frac{\theta}{\pi}.$$ In sexagesimal measure, the ratio of the given angle to two right angles is expressed by $\frac{D}{180}$. In radian measure, the ratio of these same two angles is expressed by $\frac{\theta}{\pi}$. $$\therefore \frac{D}{180} = \frac{\theta}{\pi}.$$ Example 1. What is the radian measure of 45° 13′ 30″? If D be the number of degrees in the angle, we have D = 45.225. 60) 13.5 Let θ be the number of radians in the given angle, then $$\frac{\theta}{\pi} = \frac{45 \cdot 225}{180} = \frac{1 \cdot 005}{4};$$ $$\therefore \theta = \frac{\pi}{4} \times 1 \cdot 005 = \frac{3 \cdot 1416}{4} \times 1 \cdot 005$$ $$= \cdot 7854 \times 1 \cdot 005 = \cdot 789327.$$ Thus the radian measure is '789327. Example 2. Express in sexagesimal measure the angle whose radian measure is 1.309. Let D be the number of degrees; then $$\frac{D}{180} = \frac{1\cdot309}{\pi} ;$$ $$\therefore D = \frac{180 \times 1\cdot309}{3\cdot1416} = \frac{180 \times 1309 \times 10}{31416}$$ $$= \frac{180 \times 10}{24} = 75.$$ Thus the angle is 75°. ## EXAMPLES. VII. a. [Unless otherwise stated $\pi = 3.1416$, It should be noticed that $31416 = 8 \times 3 \times 7 \times 11 \times 17$. Express in radian measure as fractions of π : 1. 45°. 2. 30°. 3. 105°. 4. 22° 30′. **5.** 18°. **6.** 57° 30′. **7.** 14° 24′. **8.** 78° 45′. Find numerically the radian measure of the following angles: 9. 25° 50′. 10. 37° 30′. 11. 82° 30′. 12. 68° 45′. 13. 157° 30′. 14. 52° 30′. Express in sexagesimal measure: - 15. $\frac{3\pi}{4}$. 16. $\frac{7\pi}{45}$. 17. $\frac{5\pi}{27}$. 18. $\frac{5\pi}{24}$. - **19.** ·3927. **20.** ·6720. **21.** ·5201. - 22. 2.8798. Taking $\pi = \frac{22}{7}$, find the radian measure of: - **23.** 36° 32′ 24″. - 24. 70° 33′ 36″ - 25. 116° 2′ 45.6″. - 26. 171° 41′ 50·4″. - 27. Taking $\frac{1}{2}$ = 31831, shew that a radian contains 206265 seconds approximately. - 28. Shew that a second is approximately equal to 0000048 of a radian. - 67. The angles $\frac{\pi}{4}$, $\frac{\pi}{3}$,
$\frac{\pi}{6}$ are the equivalents in radian measure of the angles 45°, 60°, 30° respectively. Hence the results of Arts. 34 and 35 may be written as follows: $$\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}, \qquad \cos\frac{\pi}{4} = \frac{1}{\sqrt{2}},$$ $$\cos\frac{\pi}{4} = \frac{1}{\sqrt{2}},$$ $$\tan\frac{\pi}{4}=1$$; $$\sin\frac{\pi}{3} = \frac{\sqrt{3}}{2},$$ $$\cos\frac{\pi}{3} = \frac{1}{2},$$ $$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{5}, \qquad \cos \frac{\pi}{3} = \frac{1}{2}, \qquad \tan \frac{\pi}{3} = \sqrt{3};$$ $$\sin\frac{\pi}{6} = \frac{1}{2},$$ $$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \qquad \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}.$$ $$\tan\frac{\pi}{6} = \frac{1}{\sqrt{3}}$$ Example. Find the value of $$3\tan^2\frac{\pi}{6} + \frac{4}{3}\cos^2\frac{\pi}{6} - \frac{1}{2}\cot^3\frac{\pi}{4} - \frac{2}{3}\sin^2\frac{\pi}{3} + \frac{1}{8}\sec^4\frac{\pi}{3} \,.$$ The value = $$3\left(\frac{1}{\sqrt{3}}\right)^2 + \frac{4}{3}\left(\frac{\sqrt{3}}{2}\right)^2 - \frac{1}{2}(1)^3 - \frac{2}{3}\left(\frac{\sqrt{3}}{2}\right)^2 + \frac{1}{8}(2)^4$$ = $\left(3 \times \frac{1}{3}\right) + \left(\frac{4}{3} \times \frac{3}{4}\right) - \frac{1}{2} - \left(\frac{2}{3} \times \frac{3}{4}\right) + \left(\frac{1}{8} \times 16\right)$ = $1 + 1 - \frac{1}{9} - \frac{1}{9} + 2 = 3$. 68. When expressed in radian measure the complement of θ is $\frac{\pi}{2} - \theta$, and corresponding to the formulæ of Art. 38 we now have relations of the form $$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta, \quad \tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta.$$ Example. Prove that $$(\cot \theta + \tan \theta) \cot \left(\frac{\pi}{2} - \theta\right) = \csc^2 \left(\frac{\pi}{2} - \theta\right)$$. The first side = $$(\cot \theta + \tan \theta) \tan \theta$$ = $\cot \theta \tan \theta + \tan^2 \theta$ = $1 + \tan^2 \theta = \sec^2 \theta$ = $\csc^2 \left(\frac{\pi}{2} - \theta\right)$. 69. By means of Euc. 1. 32, it is easy to find the number of radians in each angle of a regular polygon. Example. Express in radians the interior angle of a regular polygon which has n sides. The sum of the exterior angles = 4 right angles. [Euc. 1, 32 Cor.] Let θ be the number of radians in an exterior angle; then $$n\theta = 2\pi$$, and therefore $\theta = \frac{2\pi}{n}$. But interior angle = two right angles - exterior angle $$=\pi-\theta=\pi-\frac{2\pi}{n}$$. Thus each interior angle = $\frac{(n-2)\pi}{n}$. #### EXAMPLES. VII. b. Find the numerical value of 1. $$\sin \frac{\pi}{2} \cos \frac{\pi}{2} \cot \frac{\pi}{4}$$. 2. $$\tan \frac{\pi}{6} \cot \frac{\pi}{2} \cos \frac{\pi}{4}$$. 3. $$\frac{1}{2}\cos\frac{\pi}{3} + 2\csc\frac{\pi}{6}$$. 4. $$2\sin\frac{\pi}{4} + \frac{1}{2}\sec\frac{\pi}{4}$$. Find the numerical value of 5. $$\cot^2 \frac{\pi}{6} + 4 \cos^2 \frac{\pi}{4} + 3 \sec^2 \frac{\pi}{6}$$. 6. $$3 \tan^2 \frac{\pi}{6} - \frac{1}{3} \sin^2 \frac{\pi}{3} - \frac{1}{2} \csc^2 \frac{\pi}{4} + \frac{4}{3} \cos^2 \frac{\pi}{6}$$. 7. $$\left(\sin\frac{\pi}{6} + \cos\frac{\pi}{6}\right) \left(\sin\frac{\pi}{3} - \cos\frac{\pi}{3}\right) \sec\frac{\pi}{3}$$. Prove the following identities: $$\checkmark$$ 8. $\sin \theta \sec \left(\frac{\pi}{2} - \theta\right) - \cot \theta \cot \left(\frac{\pi}{2} - \theta\right) = 0$. $$\checkmark$$ 9. $\sin^2\left(\frac{\pi}{2}-\theta\right)$ cosee $\theta - \tan^2\left(\frac{\pi}{2}-\theta\right)$ sin $\theta = 0$. 10. $$\frac{\sin^2\left(\frac{\pi}{2} - \theta\right)}{\csc \theta} \cdot \frac{\sec \theta}{\cot\left(\frac{\pi}{2} - \theta\right)} = \cos^2 \theta.$$ V 11. $$\tan \theta + \tan \left(\frac{\pi}{2} - \theta\right) = \sec \theta \sec \left(\frac{\pi}{2} - \theta\right)$$. 12. $$\sec^2\theta + \sec^2\left(\frac{\pi}{2} - \theta\right) = (1 + \tan^2\theta)\sec^2\left(\frac{\pi}{2} - \theta\right)$$. Find the number of radians in each exterior angle of (1) a regular octagon, (2) a regular quindecagon. 14. Find the number of radians in each interior angle of (1) a regular dodecagon, (2) a regular heptagon. 15. Shew that $$\tan^2 \frac{\pi}{3} - \cot^2 \frac{\pi}{3} = \frac{\cos^2 \frac{\pi}{6} - \cos^2 \frac{\pi}{3}}{\cos^2 \frac{\pi}{6} \cos^2 \frac{\pi}{6}}.$$ 16. Shew that the sum of the squares of $$\sin \theta + \sin \left(\frac{\pi}{2} - \theta\right)$$ and $\cos \theta - \cos \left(\frac{\pi}{2} - \theta\right)$ is equal to 2. 70. To prove that the radian measure of any angle at the centre of a circle is expressed by the fraction $\frac{\text{subtending arc}}{\text{radius}}$. Let AOC be any angle at the centre of a circle, and AOB a radian; then radian measure of $\angle AOC$ $$= \frac{\angle AOC}{\angle AOB}$$ $$= \frac{\text{are } AC}{\text{are } AB}$$ $$= \frac{\text{are } AC}{\text{radius}},$$ since are AB = radius; that is, the radian measure of $\angle AOC = \frac{\text{subtending are}}{\text{radius}}$. 71. If α be the length of the arc which subtends an angle of θ radians at the centre of a circle of radius r, we have seen in the preceding article that $$\theta = \frac{a}{r}$$, and therefore $a = r\theta$. The fraction $\frac{\text{arc}}{\text{radius}}$ is usually called the *circular measure* of the angle at the centre of the circle subtended by the arc. The circular measure of an angle is therefore equal to its radian measure, each denoting the number of radians contained in the angle. We have preferred to use the term radian measure exclusively, in order to keep prominently in view the unit of measurement, namely the radian. Note. The term *circular measure* is a survival from the times when Mathematicians spoke of the trigonometrical functions of the *arc*. [See page 80.] Example 1. Find the angle subtended by an arc of 7.5 feet at the centre of a circle whose radius is 5 yards. Let the angle contain θ radians; then $$\theta = \frac{\text{arc}}{\text{radius}} = \frac{7.5}{15} = \frac{1}{2}$$. Thus the angle is half a radian. Example 2. In running a race at a uniform speed on a circular course, a man in each minute traverses an arc of a circle which subtends $2\frac{a}{7}$ radians at the centre of the course. If each lap is 792 yards, how long does he take to run a mile? $\pi = \frac{22}{7}$. Let r yards be the radius of the circle; then $2\pi r = \text{circumference} = 792$: $$\therefore r = \frac{792}{2\pi} = \frac{792 \times 7}{2 \times 22} = 126.$$ Let a yards be the length of the arc traversed in each minute; then from the formula $a=r\theta$, $$a = 126 \times 2\frac{6}{7} = \frac{126 \times 20}{7} = 360$$; that is, the man runs 360 yds. in each minute. $$\therefore$$ the time = $\frac{1760}{360}$ or $\frac{44}{9}$ minutes. Thus the time is 4 min. 531 sec. Example 3. Find the radius of a globe such that the distance measured along its surface between two places on the same meridian whose latitudes differ by 1° 10′ may be 1 inch, reckoning that $\pi = \frac{22}{7}$. Let the adjoining figure represent a section of the globe through the meridian on which the two places P and Q lie. Let O be the centre, and denote the radius by r inches. Now $\frac{\operatorname{arc} PQ}{\operatorname{radius}} = \operatorname{number} \operatorname{of radians} \operatorname{in} \angle PQQ;$ but arc PQ=1 inch, and $\angle POQ=1^{\circ}10'$; $$\therefore \frac{1}{r} = \text{number of radians in } 1_{\frac{1}{6}}^{1}$$ $$-1\frac{1}{6} \times \frac{\pi}{180} = \frac{7}{6} \times \frac{22}{7} \times \frac{1}{180} = \frac{11}{540};$$ whence $$r = \frac{540}{11} = 49_{11}^{1}$$. Thus the radius is 49^{1}_{1} inches. #### EXAMPLES. VII. c. - 1. Find the radian measure of the angle subtended by an arc of 1.6 yards at the centre of a circle whose radius is 24 feet. - 2. An angle whose circular measure is '73 subtends at the centre of a circle an arc of 219 feet; find the radius of the circle. - *3. An angle at the centre of a circle whose radius is 2.5 yards is subtended by an arc of 7.5 feet; what is the angle? - 4. What is the length of the arc which subtends an angle of 1.625 radians at the centre of a circle whose radius is 3.6 yards? - 5. An arc of 17 yds. 1 ft. 3 in. subtends at the centre of a circle an angle of 1.9 radians; find the radius of the circle in inches. - 6. The flywheel of an engine makes 35 revolutions in a second; how long will it take to turn through 5 radians? $\pi = \frac{22}{7}$. - 7. The large hand of a clock is 2 ft, 4 in. long; how many inches does its extremity move in 20 minutes? $\left[\pi = \frac{22}{7}\right]$. - 8. A horse is tethered to a stake; how long must the rope be in order that, when the horse has moved through 52:36 yards at the extremity of the rope, the angle traced out by the rope may be 75 degrees? - 9. Find the length of an arc which subtends 1 minute at the centre of the earth, supposed to be a sphere of diameter 7920 miles. - 10. Find the number of seconds in the angle subtended at the centre of a circle of radius 1 mile by an are $5\frac{1}{2}$ inches long. - 11. Two places on the same meridian are $145^{\circ}2$ miles apart; find their difference in latitude, taking $\pi = \frac{22}{7}$, and the earth's diameter as 7920 miles. - 12. Find the radius of a globe such that the distance measured along its surface between two places on the same meridian whose latitudes differ by Γ_{11}^{3} ° may be 1 foot, taking $\pi = \frac{22}{7}$. #### MISCELLANEOUS EXAMPLES. B. - Express in degrees the angle whose circular measure is 15708. - 2. If $C=90^{\circ}$, $A=30^{\circ}$, c=110, find b to two decimal places. - 3. Find the number of degrees in the unit angle when the angle $\frac{12\pi}{25}$ is represented by $1\frac{2}{5}$. - 4. What is the radius of the circle in which an arc of 1 inch subtends an angle of 1' at the centre? - 5. Prove that - (1) $(\sin a + \cos a)(\tan a + \cot a) = \sec a + \csc a;$ - $7(2) (\sqrt{3}+1)(3-\cot 30^\circ) = \tan^3 60^\circ 2\sin 60^\circ.$ - 6. Find the angle of elevation of the sun when a chimney 60 feet high throws a shadow 20
\sqrt{3} yards long. - 7. Prove the identities: - (1) $(\tan \theta + 2)(2 \tan \theta + 1) = 5 \tan \theta + 2 \sec^2 \theta$; - (2) $1 + \frac{\cot^2 a}{1 + \csc a} = \csc a$. - 8. One angle of a triangle is 45° and another is $\frac{5\pi}{8}$ radians; express the third angle both in sexagesimal and radian measure. - 9. The number of degrees in an angle exceeds 14 times the number of radians in it by 51. Taking $\pi = \frac{22}{7}$, find the sexagesimal measure of the angle. - 10. If $B=30^{\circ}$, $C=90^{\circ}$, b=6, find a, c, and the perpendicular from C on the hypotenuse. - 11. Shew that - (1) $\cot \theta + \cot \left(\frac{\pi}{2} \theta\right) = \csc \theta \csc \left(\frac{\pi}{2} \theta\right);$ - (2) $\csc^2 \theta + \csc^2 \left(\frac{\pi}{2} \theta\right) = \csc^2 \theta \csc^2 \left(\frac{\pi}{2} \theta\right)$. - 12. The angle of elevation of the top of a pillar is 30°, and on approaching 20 feet nearer it is 60°: find the height of the pillar. - 13. Shew that $\tan^2 A \sin^2 A = \sin^4 A \sec^2 A$. - 14. In a triangle the angle A is 3x degrees, the angle B is x grades, and the angle C is $\frac{\pi x}{300}$ radians: find the number of degrees in each of the angles. - 15. Find the numerical value of sin³ 60° cot 30° - 2 sec² 45° + 3 cos 60° tan 45° - tan² 60°. - 16. Prove the identities: - (1) $(1 + \tan A)^2 + (1 + \cot A)^2 = (\sec A + \csc A)^2$; - (2) $(\sec a 1)^2 (\tan a \sin a)^2 = (1 \cos a)^2$. - 17. Which of the following statements is possible and which impossible? (1) $$\csc \theta = \frac{a^2 + b^2}{2ab}$$; (2) $2 \sin \theta = a + \frac{1}{a}$. - 18. A balloon leaves the earth at the point A and rises at a uniform pace. At the end of 1.5 minutes an observer stationed at a distance of 660 feet from A finds the angular elevation of the balloon to be 60° ; at what rate in miles per hour is the balloon rising? - 19. Find the number of radians in the angles of a triangle which are in arithmetical progression, the least angle being 36°. - 20. Shew that $$\sin^2 a \sec^2 \beta + \tan^2 \beta \cos^2 a = \sin^2 a + \tan^2 \beta$$. 21. In the triangle ABC if $A=42^{\circ}$, $B=116^{\circ} 33'$, find the perpendicular from C upon AB produced; given $$c = 55$$, $\tan 42^{\circ} = 9$, $\tan 63^{\circ} 27' = 2$. - 22. Prove the identities: - (1) $\cot a + \frac{\sin a}{1 + \cos a} = \csc a;$ - (2) $\csc a (\sec a 1) \cot a (1 \cos a) = \tan a \sin a$. - 23. Shew that $\left(\frac{1+\cot 60^{\circ}}{1-\cot 60^{\circ}}\right)^2 = \frac{1+\cos 30^{\circ}}{1-\cos 30^{\circ}}$. - 24. A man walking N.W. sees a windmill which bears N.15° W. In half-an-hour he reaches a place which he knows to be W.15° S. of the windmill and a mile away from it. Find his rate of walking and his distance from the windmill at the first observation. - 25. Find the number of radians in the complement of $\frac{3\pi}{8}$. - 26. Solve the equations: - (1) $3 \sin \theta + 4 \cos^2 \theta = 4\frac{1}{2}$; (2) $\tan \theta + \sec 30^\circ = \cot \theta$. - 27. If $5 \tan a = 4$, find the value of $$\frac{5\sin a - 3\cos a}{\sin a + 2\cos a}.$$ 28. Prove that $$\frac{1-\sin A\cos A}{\cos A (\sec A - \csc A)} \times \frac{\sin^2 A - \cos^2 A}{\sin^3 A + \cos^3 A} = \sin A.$$ - 29. Find the distance of an observer from the top of a cliff which is 195.2 yards high, given that the angle of elevation is 77° 26′, and that sin 77° 26′= 976. - 30. A horse is tethered to a stake by a rope 27 feet long. If the horse moves along the circumference of a circle always keeping the rope tight, find how far it will have gone when the rope has traced out an angle of 70°. $\pi = \frac{22}{7}$. ## CHAPTER VIII. # TRIGONOMETRICAL RATIOS OF ANGLES OF ANY MAGNITUDE. 72. In the present chapter we shall find it necessary to take account not only of the magnitude of straight lines, but also of the direction in which they are measured. Let O be a fixed point in a horizontal line XX', then the position of any other point P in the line, whose distance from O is a given length a, will not be determined unless we know on which side of O the point P lies. But there will be no ambiguity if it is agreed that distances measured in one direction are positive and distances measured in the opposite direction are negative. Hence the following **Convention of Signs** is adopted: lines measured from 0 to the right are positive, lines measured from () to the left are negative. Thus in the above figure, if P and Q are two points on the line XX' at a distance a from O, their positions are indicated by the statements OP = +a, OQ = -a, 73. A similar convention of signs is used in the case of a plane surface. Let O be any point in the plane; through O draw two straight lines XX' and YY' in the horizontal and vertical direction respectively, thus dividing the plane into four quadrants. Then it is universally agreed to consider that - horizontal lines to the right of YY are positive, horizontal lines to the left of YY are negative; - (2) vertical lines above XX' are positive, vertical lines below XX' are negative. Thus OM_1 , OM_4 are positive, OM_2 , OM_3 are negative; M_1P_1 , M_2P_2 are positive, M_3P_3 , M_4P_4 are negative. 74. Convention of Signs for Angles. In Art. 2 an angle has been defined as the amount of revolution which the radius vector makes in passing from its initial to its final position. In the adjoining figure the straight line OP may be supposed In the adjoining figure the straight in to have arrived at its present position from the position occupied by OA by revolution about the point O in either of the two directions indicated by the arrows. The angle AOP may thus be regarded in two senses according as we suppose the revolution to have been in the same direction as the hands of a clock or in the opposite direction. To distinguish between these cases we adopt the following convention: when the revolution of the radius vector is counter-clockwise the angle is positive, when the revolution is clockwise the angle is negative. # Trigonometrical Ratios of any Angle. 75. Let XX' and YY' be two straight lines intersecting at right angles in O, and let a radius vector starting from OX revolve in either direction till it has traced out an angle A, taking up the position OP. From P draw PM perpendicular to XX'; then in the rightangled triangle OPM, due regard being paid to the signs of the lines, $$\begin{split} \sin A &= \frac{MP}{\partial P} \,, \quad \operatorname{cosec} A = \frac{\partial P}{M\bar{P}} \,, \\ \cos A &= \frac{\partial M}{\partial P} \,, \qquad \operatorname{sec} A = \frac{\partial P}{\partial M} \,, \\ \tan A &= \frac{MP}{\partial M} \,, \qquad \cot A = \frac{\partial M}{MP} \,. \end{split}$$ The radius vector OP which only fixes the boundary of the angle is considered to be always positive. From these definitions it will be seen that any trigonometrical function will be positive or negative according as the fraction which expresses its value has the numerator and denominator of the same sign or of opposite sign. 76. The four diagrams of the last article may be conveniently included in one. With centre O and fixed radius let a circle be described; then the diameters XX' and YY' divide the circle into four quadrants XOY, YOY', X'OY', Y'OX, named first, second, third, fourth respectively. Let the positions of the radius vector in the four quadrants be denoted by OP_1 , OP_2 , OP_3 , OP_4 , and let perpendiculars P_1M_1 , P_2M_2 , P_3M_3 , P_4M_4 be drawn to XX'; then it will be seen that in the first quadrant all the lines are positive and therefore all the functions of A are positive. In the second quadrant, ∂P_2 and M_2P_2 are positive, ∂M_2 is negative; hence $\sin A$ is positive, $\cos A$ and $\tan A$ are negative. In the third quadrant, OP_3 is positive, OM_3 and M_3P_3 are negative; hence $\tan A$ is positive, $\sin A$ and $\cos A$ are negative. In the fourth quadrant, ∂P_4 and ∂M_4 are positive, M_4P_4 is negative; hence $\cos A$ is positive, $\sin A$ and $\tan A$ are negative. 77. The following diagrams shew the signs of the trigonometrical functions in the four quadrants. It will be sufficient to consider the three principal functions only. | si | ne | cosine | tangent | | | | |----|-----|--------|---------|--|--|--| | + | + | - + | - + | | | | | _ | - ' | - + | +' - | | | | The diagram below exhibits the same results in another useful form. | sine positive cosine negative tangent negative | all the
ratios positive | |--|----------------------------| | tangent positive | cosine positive | | cosine negative | tangent negative | 78. When an angle is increased or diminished by any multiple of four right angles, the radius vector is brought back again into the same position after one or more revolutions. There are thus an infinite number of angles which have the same boundary line. Such angles are called **coterminal angles**. If n is any integer, all the angles coterminal with A may be represented by $n.360^{\circ} + A$. Similarly, in radian measure all the angles coterminal with θ may be represented by $2n\pi + \theta$. From the definitions of Art. 75, we see that the position of the boundary line is alone sufficient to determine the trigonometrical ratios of the angle; hence all coterminal angles have the same trigonometrical ratios. For instance, $$\sin (n \cdot 360^{\circ} + 45^{\circ}) = \sin 45^{\circ} = \frac{1}{\sqrt{2}};$$ and $\cos \left(2n\pi + \frac{\pi}{6}\right) = \cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}.$ Example. Draw the boundary lines of the angles 780°, -130°, - 400°, and in each case state which of the trigonometrical functions are negative. (1) Since $780 = (2 \times 360) + 60$, the radius vector has to make two complete revolutions and then turn through 60°. Thus the boundary line is in the first quadrant, so that all the functions
are positive. (2) Here the radius vector has to revolve through 130° in the negative direction. The boundary line is thus in the third quadrant, and since OM and MP are negative, the sine, cosine, cosecant, and secant are negative. (3) Since -400 = -(360 + 40), the radius vector has to make one complete revolution in the negative direction and then turn through 40°. The boundary line is thus in the fourth quadrant, and since MP is negative, the sine, tangent, cosecant, and cotangent are negative. # EXAMPLES. VIII. a. State the quadrant in which the radius vector lies after describing the following angles: 1. 135° . 2. 265° . 3. -315° . 4. -120° . 5. $\frac{2\pi}{3}$. 6. $\frac{5\pi}{6}$. 7. $\frac{10\pi}{3}$. 8. $-\frac{11\pi}{4}$. For each of the following angles state which of the three principal trigonometrical functions are positive. 9. 470°. 10. 330°. 11. 575°. 12, -230° . 13, -620° . 14, -1200° . 16. $\frac{13\pi}{6}$. 17. $-\frac{13\pi}{6}$. In each of the following cases write down the smallest positive coterminal angle, and the value of the expression. 18. $$\sin 420^{\circ}$$. 19. $\cos 390^{\circ}$. 20. $\tan (-315^{\circ})$. **21.** $$\sec 405^{\circ}$$. **22.** $\csc (-330^{\circ})$. **23.** $\csc 4380^{\circ}$. **24.** $$\cot \frac{17\pi}{4}$$. **25.** $\sec \frac{25\pi}{3}$. **26.** $\tan \left(-\frac{5\pi}{3}\right)$. 79. Since the definitions of the functions given in Art. 75 are applicable to angles of any magnitude, positive or negative, it follows that all relations derived from these definitions must be true universally. Thus we shall find that the fundamental formulæ given in Art. 29 hold in all cases; that is, $$\sin A \times \csc A = 1$$, $\cos A \times \sec A = 1$, $\tan A \times \cot A = 1$; $$\tan A = \frac{\sin A}{\cos A}, \qquad \cot A = \frac{\cos A}{\sin A};$$ $$\sin^2 A + \cos^2 A = 1,$$ $$1 + \tan^2 A = \sec^2 A,$$ $$1 + \cot^2 A = \csc^2 A.$$ It will be useful practice for the student to test the truth of these formulae for different positions of the boundary line of the angle A. We shall give one illustration. 80. Let the radius vector revolve from its initial position OX till it has traced out an angle-A and come into the position OP indicated in the figure. Draw PM perpendicular to AAX. $$MP^2 + OM^2 = OP^2....(1).$$ Divide each term by OP^2 ; thus $$\left(\frac{MP}{OP}\right)^2 + \left(\frac{OM}{OP}\right)^2 = 1;$$ that is, $$\sin^2 A + \cos^2 A = 1$$. Divide each term of (1) by OM^2 ; thus $$\left(\frac{MP}{OM}\right)^2 + 1 = \left(\frac{OP}{OM}\right)^2;$$ that is, $$\tan^2 A + 1 = \sec^2 A$$. Divide each term of (1) by MP^2 ; thus $$1 + \left(\frac{OM}{MP}\right)^2 = \left(\frac{OP}{MP}\right)^2 :$$ that is, $$1 + \cot^2 A = \csc^2 A$$. It thus appears that the truth of these relations depends only on the statement $OP^2 = MP^2 + OM^2$ in the right-angled triangle OMP, and this will be the case in whatever quadrant OP lies. Note. OM^2 is positive, although the line OM in the figure is negative. 81. In the statement $\cos A = \sqrt{1 - \sin^2 A}$, either the positive or the negative sign may be placed before the radical. The sign of the radical hitherto has always been taken positively, because we have restricted ourselves to the consideration of acute angles. It will sometimes be necessary to examine which sign must be taken before the radical in any particular case. Example 1. Given $\cos 126^{\circ} 53' = -\frac{3}{5}$, find $\sin 126^{\circ} 53'$ and $\cot 126^{\circ} 53'$. Since $\sin^2 A + \cos^2 A = 1$ for angles of any magnitude, we have $$\sin A = \pm \sqrt{1 - \cos^2 A}.$$ Denote $126^{\circ} 53'$ by A; then the boundary line of A lies in the second quadrant, and therefore $\sin A$ is positive. Hence the sign + must be placed before the radical; The same results may also be obtained by the method used in the following example. The appropriate signs of the lines are shewn in the figure. Example 2. If $\tan A = -\frac{15}{8}$, find $\sin A$ and $\cos A$. The boundary line of A will lie either in the second or in the fourth quadrant, as OP or OP'. In either position, the radius vector = $$\sqrt{(15)^2 + (8)^2}$$ = $\sqrt{289} = 17$. Hence $$\sin XOP = \frac{15}{17}$$, $\cos XOP = -\frac{8}{17}$; and $\sin XOP' = -\frac{15}{17}$, $\cos XOP' = \frac{8}{17}$. Thus corresponding to $\tan A$, there are two values of $\sin A$ and two values of $\cos A$. If however it is known in which quadrant the boundary line of A lies, $\sin A$ and $\cos A$ have each a single value. n nes, sin n and cos n nave each a single value. ## EXAMPLES. VIII. b. - 1. Given $\sin 120^{\circ} = \frac{\sqrt{3}}{2}$, find $\tan 120^{\circ}$. - 2. Given $\tan 135^{\circ} = -1$, find $\sin 135^{\circ}$. - 3. Find $\cos 240^{\circ}$, given that $\tan 240^{\circ} = \sqrt{3}$. - 4. If $A = 202^{\circ} 37'$ and $\sin A = -\frac{5}{13}$, find $\cos A$ and $\cot A$. - 5. If $A = 143^{\circ} 8'$ and cosec $A = 1\frac{9}{3}$, find sec_4 and $\tan A$. - 6. If $A = 216^{\circ} 52'$ and $\cos A = -\frac{4}{5}$, find cot A and $\sin A$. - 7. Given $\sec \frac{2\pi}{3} = -2$, find $\sin \frac{2\pi}{3}$ and $\cot \frac{2\pi}{3}$. - 8. Given $\sin \frac{5\pi}{4} = -\frac{1}{\sqrt{2}}$, find $\tan \frac{5\pi}{4}$ and $\sec \frac{5\pi}{4}$. - 9. If $\cos A = \frac{12}{13}$, find $\sin A$ and $\tan A$. # CHAPTER IX. #### VARIATIONS OF THE TRIGONOMETRICAL FUNCTIONS. 82. A CAREFUL perusal of the following remarks will render the explanations which follow more easily intelligible. Consider the fraction $\frac{a}{x}$ in which the numerator a has a certain fixed value and the denominator x is a quantity subject to change; then it is clear that the smaller x becomes the larger does the value of the fraction $\frac{a}{x}$ become. For instance $$\frac{a}{\frac{1}{10}} = 10a, \quad \frac{a}{\frac{1}{1000}} = 1000a, \quad \frac{a}{\frac{1}{10000000}} = 10000000a.$$ By making the denominator x sufficiently small the value of the fraction $\frac{a}{x}$ can be made as large as we please; that is, as x approaches to the value 0, the fraction $\frac{\partial}{\partial t}$ becomes infinitely great. The symbol ∞ is used to express a quantity infinitely great, or more shortly *infinity*, and the above statement is concisely written when $$x=0$$, the limit of $\frac{a}{x}=\infty$. Again, if x is a quantity which gradually increases and finally becomes infinitely large, the fraction $\frac{a}{x}$ becomes infinitely small; that is, when $$x = \infty$$, the limit of $\frac{a}{x} = 0$. 83. DEFINITION. If y is a function of x, and if when x approaches nearer and nearer to the fixed quantity a, the value of y approaches nearer and nearer to the fixed quantity b and can be made to differ from it by as little as we please, then b is called the **limiting value** or the **limit** of y when x=a. # 84. Trigonometrical Functions of 0°. Let XOP be an angle traced out by a radius vector OP of fixed length. Draw PM perpendicular to OX; then $$\sin POM = \frac{MP}{OP}$$. If we suppose the angle POM to be gradually decreasing, MP will also gradually decrease, and if OP ultimately come into coincidence with OM the angle POM vanishes and MP=0. Hence $$\sin 0^{\circ} = \frac{0}{OP} = 0.$$ Again, $\cos POM = \frac{OM}{OP}$; but when the angle POM vanishes OP becomes coincident with OM. Hence $$\cos 0^{\circ} = \frac{OM}{OM} = 1.$$ Also when the angle POM vanishes, $$\tan 0^{\circ} = \frac{0}{OM} = 0.$$ And $$\csc 0^{\circ} = \frac{1}{\sin 0^{\circ}} = \frac{1}{0} = \infty ;$$ $$\sec \theta^{\circ} = \frac{1}{\cos \theta^{\circ}} = \frac{1}{1} = 1;$$ $$\cot 0^{\circ} = \frac{1}{\tan 0^{\circ}} = \frac{1}{0} = \infty$$. # 85. Trigonometrical Functions of 90° or $\frac{\pi}{2}$. Let *NOP* be an angle traced out by a radius vector of fixed length. Draw PM perpendicular to ∂X , and ∂Y perpendicular to ∂X . By definition, $$\sin POM = \frac{MP}{OP} \;, \qquad \cos POM = \frac{OM}{OP} \;, \qquad \tan POM = \frac{MP}{OM} \;.$$ If we suppose the angle POM to be gradually increasing, MP will gradually increase and OM decrease. When OP comes into coincidence with OY the angle POM becomes equal to 90° , and OM vanishes, while MP becomes equal to OP. Hence $$\sin 90^{\circ} = \frac{OP}{OP} = 1;$$ $$\cos 90^{\circ} = \frac{0}{OP} = 0;$$ $$\tan 90^{\circ} = \frac{MP}{OM} = \frac{OP}{0} = \infty.$$ And $$\cot 90^{\circ} = \frac{1}{\tan 90^{\circ}} = \frac{1}{\infty} = 0;$$ $$\sec 90^{\circ} = \frac{1}{\cos 90^{\circ}} = \frac{1}{0} = \infty;$$ $$\csc 90^{\circ} = \frac{1}{\sin 90^{\circ}} = 1.$$ H. K. E. T. 86. To trace the changes in sign and magnitude of $\sin A$ as A increases from 0° to 360° . Let XX' and YY' be two straight lines intersecting at right angles in O. With centre O and any radius OP describe a circle, and suppose the angle A to be traced out by the revolution of OP through the four quadrants starting from OX. Draw PM perpendicular to OX and let OP = r; then $$\sin A = \frac{MP}{r}$$, and since r does not alter in sign or magnitude, we have only to consider the changes of MP as P moves round the circle. When $$A=0^{\circ}$$, $MP=0$, and $\sin 0^{\circ} = \frac{0}{\sigma} = 0$. In the first quadrant, MP is positive and increasing; ... sin A is positive and increasing. When $$A = 90^{\circ}$$, $MP = r$, and $\sin 90^{\circ} = \frac{r}{r} = 1$. In the second quadrant, MP is positive and decreasing; \therefore sin A is positive and decreasing. When $$A = 180^{\circ}$$, $MP = 0$, and $\sin 180^{\circ} = \frac{0}{\pi} = 0$. In the third quadrant, MP is negative and increasing; \therefore sin A is negative and increasing. When $A = 270^{\circ}$, MP is equal to r, but is negative: hence $$\sin 270^{\circ} = -\frac{r}{r} = -1.$$ In the fourth quadrant, MP is negative and decreasing; \therefore sin A is negative and decreasing. When $$A = 360^{\circ}$$, $MP
= 0$, and $\sin 360^{\circ} = \frac{0}{r} = 0$. 87. The results of the previous article are concisely shewn in the following diagram: $$sin 90^{\circ}=1$$ $$sin A positive sin A positive$$ $$and decreasing and increasing sin 0^{\circ}=0$$ $$sin A negative sin A negative$$ and increasing and decreasing 88. We leave as an exercise to the student the investigation of the changes in sign and magnitude of cos A as A increases from 0° to 360°. The following diagram exhibits these changes. $$\cos 90^\circ = 0$$ $\cos A \text{ negative } \cos A \text{ positive }$ $\cos 180^\circ = -1$ $\cos A \text{ negative } \cos A \text{ positive }$ $\cos A \text{ negative } \cos A \text{ positive }$ and decreasing and increasing $\cos 270^\circ = 0$ 89. To truce the changes in sign and magnitude of $\tan A$ as A increases from 0° to 360°. With the figure of Art. 86, $\tan A = \frac{MP}{\overline{O}M}$, and its changes will therefore depend on those of MP and OM. When $$A = 0^{\circ}$$, $MP = 0$, $OM = r$; $\therefore \tan 0^{\circ} = \frac{0}{r} = 0$. In the first quadrant, MP is positive and increasing,OM is positive and decreasing;∴ tan A is positive and increasing. When $A = 90^{\circ}$, MP = r, OM = 0; $\therefore \tan 90^{\circ} = \frac{r}{0} = \infty$. In the second quadrant, MP is positive and decreasing, OM is negative and increasing; \therefore tan A is negative and decreasing. When $A = 180^{\circ}$, MP = 0; : tan $180^{\circ} = 0$. In the third quadrant, MP is negative and increasing, OM is negative and decreasing; :. tan A is positive and increasing. When $A = 270^{\circ}$, OM = 0; : tan $270^{\circ} = \infty$. In the fourth quadrant, MP is negative and decreasing, OM is positive and increasing; \therefore tan A is negative and decreasing. When $A = 360^{\circ}$, MP = 0; : tan $360^{\circ} = 0$. Note. When the numerator of a fraction changes continually from a small positive to a small negative quantity the fraction changes sign by passing through the value 0. When the denominator changes continually from a small positive to a small negative quantity the fraction changes sign by passing through the value ∞ . For instance, as A passes through the value 90° , OM changes from a small positive to a small negative quantity, hence $\frac{OM}{OP}$, that is $\cos A$, changes sign by passing through the value 0, while $\frac{PM}{OM}$, that is $\tan A$, changes sign by passing through the value ∞ . 90. The results of Art. 89 are shewn in the following diagram: tan A negative tan A positive and decreasing and increasing tan $$\hat{o}=0$$ tan A positive tan A negative tan A negative and increasing and decreasing tan $270^{\circ}=\infty$ The student will now have no difficulty in tracing the variations in sign and magnitude of the other functions. 91. In Arts. 86 and 89 we have seen that the variations of the trigonometrical functions of the angle XOP depend on the position of P as P moves round the circumference of the circle. On this account the trigonometrical functions of an angle are called **circular functions**. This name is one that we shall use frequently. #### EXAMPLES. IX. a. Trace the changes in sign and magnitude of - 1. cot A, between 0° and 360°. - 2. cosec θ , between 0 and π . - 3. $\cos \theta$, between π and 2π . - 4. $\tan A$, between -90° and -270° . - 5. $\sec \theta$, between $\frac{\pi}{2}$ and $\frac{3\pi}{2}$. Find the value of - 6. $\cos 0^{\circ} \sin^2 270^{\circ} 2 \cos 180^{\circ} \tan 45^{\circ}$. - 7. $3 \sin 0^{\circ} \sec 180^{\circ} + 2 \csc 90^{\circ} \cos 360^{\circ}$. - 8. $2 \sec^2 \pi \cos 0 + 3 \sin^3 \frac{3\pi}{2} \csc \frac{\pi}{2}$. - 9. $\tan \pi \cos \frac{3\pi}{2} + \sec 2\pi \csc \frac{3\pi}{2}$. # Graphs of the Trigonometrical Functions. $\mathbf{91}_{\mathrm{A}}$. The results of Arts, 86—90 may be illustrated by means of graphs. **Graph of sin** x. Put $y = \sin x$, and find the values of y corresponding to values of x differing by 30°. From a Table of sines we have | x | 0° | 30° | 60° | 90° | | 150 | 180° | | 240° | 270^ | | |------------------|----|-----|------|-----|------|-----|------|------|------------------|------|--| | y
or
sin x | 0 | •õ | ·866 | 1 | -866 | *.5 | 0 | Ğ* – | - •866
- •866 | - 1 | | In the figure on the opposite page let values of x be measured on the horizontal axis ∂X , each division being taken to represent 10° , and on the vertical axis ∂Y , let 10 divisions be taken as the unit. Then from the series of points given by the above table, we obtain the graph represented by the continuous waving line in the diagram. From the graph the following points are evident: - (i) The sine of an angle goes through all its changes gradually (without abrupt changes) once as the angle increases through four right angles. For this reason $\sin x$ is said to be a continuous function whose period is 4 right angles. Beyond 360° the graph may be continued indefinitely, the curve already drawn being endlessly repeated. - (ii) The greatest and least values of $\sin x$ are +1 and -1. Between these limits the sine of an angle may have any value, positive or negative. The maximum and minimum values are shewn by the ordinates at 90° and 270° . The graph should be compared with the details given in Art. 86. Example. Solve the equation $\sin x = 7$ graphically. Here y = `7, and every point on the graph whose ordinate is `7 will furnish a solution of the equation. Hence we have only to note the points in which the graph is cut by a line parallel to the x-axis and at a distance `7 from it. Thus $x = 45^{\circ}$, 135° , 405° , 495° , ..., GRAPH OF SIN X. 91_B. Graph of cos x. We leave the details of the graph of cos x as an exercise for the student. It should be drawn from the same series of angles, and with the same units as in the graph of $\sin x$. It is given on a small scale in the adjoining figure. GRAPH OF $\cos x$. It may be noticed that the graph is the same as if the graph of $\sin x$ were moved to the left through a space corresponding to 90° . It will be proved in Art. 98 that $\cos x = \sin (90^{\circ} + x)$ so that when x has the values the values of cos x are those of $$\sin 90^\circ, \quad \sin 120^\circ, \quad \sin 150^\circ, \quad \sin 180^\circ, \ \dots$$ As before it is seen that the graph of $\cos x$ is **continuous** between 0° and 360°. Its maximum and minimum values are +1 and -1, occurring at 0° and the even multiples of 90°. # 91c. Graph of tan x. From a Table of tangents we have | | 3. | 0° | 15° | 30° | 45° | 60° | 75° | 90° | 105° | 120° | 135° | 150° | 165° | 180° | |-----|-----|----|-----|-----|-----|-----|-----|-----|------|------|------|------|---------------|------| | | | | | | | | | | | | | | | | | - | | | | , | | | | | | | | | , | | | | or | 0 | -97 | -58 | 1 | 1.7 | 3.7 | oc | -3.7 | -17 | -1 | 58 | 27 | 0 | | - 1 | anx | | | | 1 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | Let each horizontal division be taken to represent 6°, and on the vertical axis let 5 divisions represent the unit; then the graph will be as in the adjoining diagram, and it will be seen to consist of an infinite number of discontinuous equal branches. GRAPH OF TAN x. The following points should be noticed: - (i) The tangent of an angle goes through all its changes once as the angle increases through **two** right angles. As the angle approaches 90°, the tangent increases very rapidly, and the graph is continually approaching nearer to the vertical line through the division marking 90°, but never actually reaching it till $y=\infty$. As the angle passes through 90°, the tangent changes from an infinite positive to an infinite negative value. As the angle increases from 90° to 180°, the numerical values of the tangent are those already traced but in reverse order, and of opposite sign. - (ii) Through every subsequent period of two right angles, the graph is repeated. - (iii) The tangent of an angle may have any numerical value, positive or negative. Note. The above figure was drawn on paper ruled to inches and tenths of an inch and then reduced to half the original size. The student should draw a larger figure for himself. 91_D. The graphs of cot x, sec x, and cosec x may be left as an exercise for the student. He may also consult Arts. 288—291, where the graphs of the trigonometrical functions are discussed in a slightly different manner. #### EXAMPLES. IX. b. 1. Draw, with the same axes and units, the graphs of $\sin x$ and $\cos x$ on a scale twice as large as that in Art. 91_{λ} . [This diagram will be required for Ex. 9.] 2. Draw the graph of $\sin x$ from the following values of x: [Take 1 inch horizontally to represent 25°, and 2 inches vertically to represent unity.] - 3. From the figure of Ex. 2 find the value of sin 37°, and the angle whose sine is '8, to the nearest degree. - **4.** Find from the Tables the value of $\cos x$ when x has the values Draw a curve on a large scale shewing how $\cos x$ varies as x increases from 0° to 60°. - 5. From the figure of Ex. 4, find approximate values of cos 25° and cos 45°. Verify by means of the Tables. - 6. Solve graphically the following equations, giving, to the nearest degree, all the solutions less than 360°. - (i) $15\sin^2\theta 16\sin\theta + 4 = 0$; - (ii) $\cos^2 \theta 1.7 \cos \theta + .72 = 0$. - 7. Draw the graph of cot x, using the following values of x: 15°, 30°, 45°, 60°, 75°, 90°, 105°, ... 180°. [Take 1 inch horizontally to represent 15°, and 1 inch vertically to represent unity.] - 8. From the figure of Ex. 7 find approximate values of cot 48° and cot 59°. Verify by means of the Tables. - 9. From the graphs in Ex. 1, deduce the graph of $\sin x + \cos x$. Hence solve the following equations graphically: (i) $\sin x + \cos x = 0$; (ii) $\sin x + \cos x = 1$. Note on the old definitions of the
Trigonometrical Functions, Formerly, Mathematicians considered the trigonometrical functions with reference to the *arc* of a given circle, and did not regard them as ratios but as the *lengths* of certain straight lines drawn in relation to this arc. Let OA and OB be two radii of a circle at right angles, and let P be any point on the circumference. Draw PM and PN perpendicular to OA and OB respectively, and let the tangents at A and B meet OP produced in T and t respectively. The lines PM, AT, OT, AM were named respectively the sine, tangent, secant, versed-sine of the arc AP, and PN, Bt, Ot, BN, which are the sine, tangent, secant, versed-sine of the complementary arc BP, were named respectively the cosine, cotangent, cosecant, coversed-sine of the arc AP. As thus defined each trigonometrical function of the arc is equal to the corresponding function of the angle, which it subtends at the centre of the circle, multiplied by the radius. Thus $$\frac{AT}{OA}$$ = tan POA ; that is, $AT = OA \times \tan POA$; $$\frac{Ot}{OB} = \sec BOP = \csc POA$$; that is, $Ot = OB \times \csc POA$. The values of the functions of the arc therefore depended on the length of the radius of the circle as well as on the angle subtended by the arc at the centre of the circle, so that in Tables of the functions it was necessary to state the magnitude of the radius. The names of the trigonometrical functions and the abbreviations for them now in use were introduced by different Mathematicians chiefly towards the end of the sixteenth and during the seventeenth century, but were not generally employed until their re-introduction by Euler. The development of the science of Trigonometry may be considered to date from the publication in 1748 of Euler's Introductio in analysin Infinitorum. The reader will find some interesting information regarding the progress of Trigonometry in Ball's Short History of Mathematics. #### MISCELLANEOUS EXAMPLES. C. - 1. Draw the boundary lines of the angles whose tangent is equal to $-\frac{3}{1}$, and find the cosine of these angles. - 2. Shew that $$\cos A (2 \sec A + \tan A) (\sec A - 2 \tan A) = 2 \cos A = 3 \tan A.$$ - 3. Given $C=90^{\circ}$, b=10.5, c=21, solve the triangle. - 4. If $\sec A = -\frac{25}{7}$, and A lies between 180° and 270°, find $\cot A$. - 5. The latitude of Bombay is 19° N.: find its distance from the equator, taking the diameter of the earth to be 7920 miles. - 6. From the top of a cliff 200 ft. high, the angles of depression of two boats due east of the observer are 34° 30′ and 18° 40′: find their distance apart, given $$\cot 34^{\circ} 30' = 1.455$$, $\cot 18^{\circ} 40' = 2.96$. - 7. If A lies between 180° and 270°, and $3 \tan A = 4$, find the value of $2 \cot A 5 \cos A + \sin A$. - 8. Find, correct to three decimal places, the radius of a circle in which an arc 15 inches long subtends at the centre an angle of 71° 36′ 3.6″. - 9. Shew that $$\frac{\tan^3 \theta}{1 + \tan^2 \theta} + \frac{\cot^3 \theta}{1 + \cot^2 \theta} = \frac{1 - 2\sin^2 \theta \cos^2 \theta}{\sin \theta \cos \theta}.$$ 10. The angle of elevation of the top of a tower is 68° 11′, and a flagstaff 24 ft. high on the summit of the tower subtends an angle of 2° 10′ at the observer's eye. Find the height of the tower, given $$\tan 70^{\circ} 21' = 2.8$$, $\cot 68^{\circ} 11' = .4$. - 11. If $\tan A = \frac{1}{2}$, and $\tan B = \frac{1}{3}$, construct the angles A and B on opposite sides of a common arm, and measure the angle A + B. - 12. Find to the nearest minute the smallest positive angles which satisfy the following equation: $$12 \tan^2 \theta + 7 \tan \theta - 12 = 0$$. - 13. Two places on the same meridian have a difference in latitude of 21° 12′. If they are 3.7 inches apart on a globe, find its radius to the nearest tenth of an inch. Also find the number of miles between the two places, assuming the earth's radius to be 4000 miles. - 14. A man, walking in a direction 47° N. of E., sees a tower which bears N. 13° E. In 40 minutes he reaches a place which he knows to be E. 13° S. of the tower, and 2 km. from it. Find his rate of walking and his distance from the tower at the first observation. - 15. If $\sin(\alpha-\beta)=7323$, and $\cos(\alpha+\beta)=6218$, find from the Tables the smallest positive values of α and β , to the nearest minute. - 16. If $3 \cot a = 2$, find the value of $$\frac{10\sin a - 6\cos a}{4\sin a + 3\cos a}.$$ 17. At noon a ship sailing W. 16° S., at 12 miles an hour observes a fort in direction S. 31° W. At 1.40 r.m. the fort bears S. 16° E. from the ship; find the distance of the ship from the fort at each observation. ### CHAPTER X. #### CIRCULAR FUNCTIONS OF CERTAIN ALLIED ANGLES. ### 92. Circular Functions of $180^{\circ} - A$. Take any straight line XOX', and let a radius vector starting from OX revolve until it has traced the angle A, taking up the position X'M' Again, let the radius vector starting from OX revolve through 180° into the position OX' and then back again through an angle A taking up the final position OP'. Thus XOP' is the angle $180^{\circ}-A$. From P and P' draw PM and P'M' perpendicular to XX'; then by Euc. 1. 26 the triangles OPM and OP'M' are geometrically equal. By definition, $$\sin{(180^\circ - A)} = \frac{M'P'}{OP'};$$ but M'P' is equal to MP in magnitude and is of the same sign; $$\therefore \sin(180^\circ - A) = \frac{MP}{OP} = \sin A.$$ Again, $$\cos(180^{\circ} - A) = \frac{OM'}{OP'}$$; and OM' is equal to OM in magnitude, but is of opposite sign; $$\therefore \cos(180^\circ - A) = \frac{-OM}{OP} = -\frac{OM}{OP} = -\cos A.$$ Also $$\tan (180^\circ - A) = \frac{M'P'}{OM'} = \frac{MP}{-OM} = -\frac{MP}{OM} = -\tan A.$$ - 93. In the last article, for the sake of simplicity we have supposed the angle A to be less than a right angle, but all the formulæ of this chapter may be shewn to be true for angles of any magnitude. A general proof of one case is given in Art. 102, and the same method may be applied to all the other cases. - 94. If the angles are expressed in radian measure, the formulæ of Art. 92 become $$\sin (\pi - \theta) = \sin \theta,$$ $$\cos (\pi - \theta) = -\cos \theta,$$ $$\tan (\pi - \theta) = -\tan \theta.$$ Example 1. Find the sine and cosine of 120°. $$\sin 120^{\circ} = \sin (180^{\circ} - 60^{\circ}) = \sin 60^{\circ} = \frac{\sqrt{3}}{2}.$$ $$\cos 120^{\circ} = \cos (180^{\circ} - 60^{\circ}) = -\cos 60^{\circ} = -\frac{1}{2}.$$ Example 2. Find the cosine and cotangent of $\frac{5\pi}{6}$. $$\cos\frac{5\pi}{6} = \cos\left(\pi - \frac{\pi}{6}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}.$$ $$\cot\frac{5\pi}{6} = \cot\left(\pi - \frac{\pi}{6}\right) = -\cot\frac{\pi}{6} = -\sqrt{3}.$$ - 95. DEFINITION. When the sum of two angles is equal to two right angles each is said to be the supplement of the other and the angles are said to be supplementary. Thus if A is any angle its supplement is $180^{\circ} A$. - 96. The results of Art. 92 are so important in a later part of the subject that it is desirable to emphasize them. We therefore repeat them in a verbal form: the sines of supplementary angles are equal in magnitude and are of the same sign; the cosines of supplementary angles are equal in magnitude but are of opposite sign; the tangents of supplementary angles are equal in magnitude but are of opposite sign. ### 97. Circular Functions of 180°+A. Take any straight line XOX' and let a radius vector starting from OX revolve until it has traced the angle A, taking up the position OP. Again, let the radius vector starting from OX revolve through 180° into the position OX', and then further through an angle A, taking up the final position OP'. Thus XOP' is the angle $180^{\circ} + A$. From P and P' draw PM and P'M' perpendicular to XX'; then OP and OP' are in the same straight line, and by Euc. 1. 26 the triangles OPM and OP'M' are geometrically equal. By definition, $$\sin\left(180^\circ + A\right) = \frac{M'P'}{OP'};$$ and M'P' is equal to MP in magnitude but is of opposite sign; $$\sin (180^{\circ} + A) = \frac{-MP}{OP} = -\frac{MP}{OP} = -\sin A.$$ Again, $$\cos(180^{\circ} + A) = \frac{OM'}{OP'}$$; and OM' is equal to OM in magnitude but is of opposite sign; $$\therefore \cos(180^\circ + A) = \frac{-OM}{OP} = -\frac{OM}{OP} = -\cos A.$$ Also $$\tan (180^\circ + A) = \frac{M'P'}{OM'} = \frac{-MP}{-OM} = \frac{MP}{OM} = \tan A.$$ Expressed in radian measure, the above formulæ are written $\sin (\pi + \theta) = -\sin \theta$, $\cos (\pi + \theta) = -\cos \theta$, $\tan (\pi + \theta) = \tan \theta$. In these results we may draw especial attention to the fact that an angle may be increased or diminished by two right angles as often as we please without altering the value of the tangent. Example. Find the value of $$\cot 210^\circ$$. $\cot 210^\circ = \cot (180^\circ + 30^\circ) = \cot 30^\circ = \sqrt{3}$. #### 98. Circular Functions of 90°+A. Take any straight line XOX', and let a radius vector starting from OX revolve until it has traced the angle A, taking up the position OP. Again, let the radius vector starting from OX revolve through 90° into the position OY, and then further through \overrightarrow{X} an angle A, taking up the final position OP'. Thus XOP' is the angle $90^{\circ} + A$. From P and P' draw PM and P'M' perpendicular to A'A'; then $\angle M'P'O = \angle P'O'Y = A = \angle POM$. By Euc. 1. 26, the triangles OPM and OPM' are geometrically equal; hence $\mathcal{M}'P'$ is equal to ∂M in magnitude and is of the same sign, and $\partial M'$ is equal to MP in magnitude but is of opposite sign. By definition, $$\sin(90^{\circ} + A) = \frac{M'P'}{\partial P} = \frac{\partial M}{\partial P} = \cos A;$$ $$\cos(90^{\circ} + A) = \frac{\partial M'}{\partial P} = \frac{-MP}{\partial P} = -\frac{MP}{\partial P} = -\sin A;$$ $$\tan(90^{\circ} + A) = \frac{M'P'}{\partial M'} = \frac{\partial M}{-MP} = -\frac{\partial M}{MP} = -\cot A.$$ Expressed in radian
measure the above formulæ become $$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta$$, $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$, $\tan\left(\frac{\pi}{2} + \theta\right) = -\cot\theta$. Example 1. Find the value of sin 120°. $$\sin 120^\circ = \sin (90^\circ + 30^\circ) = \cos 30^\circ = \frac{\sqrt{3}}{2}$$. н. к. е. т. Example 2. Find the values of $\tan (270^{\circ} + A)$ and $\cos \left(\frac{3\pi}{2} + \theta\right)$. $$\tan (270^{\circ} + A) = \tan (180^{\circ} + \overline{90^{\circ} + A}) = \tan (90^{\circ} + A) = -\cot A;$$ $$\cos\left(\frac{3\pi}{2}+\theta\right)=\cos\left(\pi+\frac{\pi}{2}+\theta\right)=-\cos\left(\frac{\pi}{2}+\theta\right)=\sin\theta.$$ #### 99. Circular Functions of -A. Take any straight line OX and let a radius vector starting from OX revolve until it has traced the angle A, taking up the position OP. Again, let the radius vector starting from OX revolve in the opposite direction until it has traced the angle A, taking up the position OP'. Join PP'; then MP' is equal to MP' in magnitude, and the angles at M are right angles. [Euc. I. 4.] By definition, $$\sin(-A) = \frac{MP'}{OP} = \frac{-MP}{OP} = -\sin A;$$ $$\cos(-A) = \frac{OM}{OP'} = \frac{OM}{OP} = \cos A;$$ $$\tan(-A) = \frac{MP'}{OM} = \frac{-MP}{OM} = -\tan A.$$ It is especially worthy of notice that we may change the sign of an angle without altering the value of its cosine. Example. Find the values of cosec (-210°) and cos (A - 270°). cosec (-210°) = -cosec 210° = -cosec (180° + 30°) = cosec 30° = 2. cos (A - 270°) = cos (270° - A) = cos (180° + $$\overline{90° - A}$$) = -cos (90° - A) = -sin A. 100. If f(A) denotes a function of A which is unaltered in magnitude and sign when -A is written for A, then f(A) is said to be an even function of A. In this case f(-A) = f(A). If when -A is written for A, the sign of f(A) is changed while the magnitude remains unaltered, f(A) is said to be an **odd function** of A, and in this case f(-A) = -f(A). From the last article it will be seen that cos A and sec A are even functions of A, sin A, cosec A, tan A, cot A are odd functions of A. #### EXAMPLES. X. a. Find the numerical value of 1. 2. sin 150°. cos 135°. **4.** $\csc 225^{\circ}$. **5.** $\sin (-120^{\circ})$. **6.** $\cot (-135^{\circ})$. 7. cot 315°. 8. cos (-.240°). 9. $\sec(-300^\circ)$. 3. tan 240°. 10. $\tan \frac{3\pi}{4}$. 11. $\sin \frac{4\pi}{2}$. 12. $\sec \frac{2\pi}{2}$. 13. cosec $\left(-\frac{\pi}{6}\right)$. 14. $\cos\left(-\frac{3\pi}{4}\right)$. 15. $\cot\left(-\frac{5\pi}{6}\right)$. Express as functions of A: 16. $\cos(270^{\circ} + A)$. 17. $\cot (270^{\circ} - A)$. 18. $\sin{(A-90^{\circ})}$. **21.** cot $(A - 90^{\circ})$. Express as functions of θ : 22. $\sin\left(\theta - \frac{\pi}{2}\right)$. 23. $\tan\left(\theta - \pi\right)$. 24. $\sec\left(\frac{3\pi}{2} - \theta\right)$. Express in the simplest form: $\tan (180^{\circ} + A) \sin (90^{\circ} + A) \sec (90^{\circ} - A)$ 25. 19. $\sec{(A-180^\circ)}$. 20. $\sin{(270^\circ-A)}$. $\cos (90^{\circ} + A) + \sin (180^{\circ} - A) - \sin (180^{\circ} + A) - \sin (-A)$ 26. 27. $\sec(180^{\circ} + A) \sec(180^{\circ} - A) + \cot(90^{\circ} + A) \tan(180^{\circ} + A)$ 101. In Art. 38 we have established the relations which subsist between the trigonometrical ratios of $90^{\circ} - A$ and those of A, when A is an acute angle. We shall now give a general proof which is applicable whatever be the magnitude of A. ### 102. Circular Functions of 90° - A for any value of A. Let a radius vector starting from OX revolve until it has traced the angle A, taking up the position OP in each of the two figures. Again, let the radius vector starting from OX revolve through 90° into the position OY and then back again through an angle A, taking up the final position OP in each of the two figures. Draw PM and P'M' perpendicular to XX'; then whatever be the value of A, it will be found that $\angle OP'M' = \angle POM$, so that the triangles OMP and OM'P' are geometrically equal, having MP equal to OM', and OM equal to M'P', in magnitude. When P is above XX', P' is to the right of YY', and when P is below XX', P' is to the left of YY'. When P' is above XX', P' is to the right of YY', and when P' is below XX', P is to the left of YY'. Hence MP is equal to OM' in magnitude and is always of the same sign as OM'; and M'P' is equal to OM in magnitude and is always of the same sign as OM. By definition, $$\sin (90^{\circ} - A) = \frac{M'P'}{OP'} = \frac{OM}{OP} = \cos A;$$ $$\cos (90^{\circ} - A) = \frac{OM'}{OP'} = \frac{MP}{OP} = \sin A;$$ $$\tan (90^{\circ} - A) = \frac{M'P'}{OM'} = \frac{OM}{MP} = \cot A.$$ A general method similar to the above may be applied to all the other cases of this chapter. #### 103. Circular Functions of n. 360° + A. If n is any integer, $n.360^{\circ}$ represents n complete revolutions of the radius vector, and therefore the boundary line of the angle $n.360^{\circ} + A$ is coincident with that of A. The value of each function of the angle $n.360^{\circ} + A$ is thus the same as the value of the corresponding function of A both in magnitude and in sign. 104. Since the functions of all coterminal angles are equal, there is a recurrence of the values of the functions each time the boundary line completes its revolution and comes round into its original position. This is otherwise expressed by saying that the circular functions are periodic, and 360° is said to be the amplitude of the period. In radian measure, the amplitude of the period is 2π . Note. In the case of the tangent and cotangent the amplitude of the period is half that of the other circular functions, being 180° or π radians. [Art. 97.] ### Circular Functions of n. 360° - A. If n is any integer, the boundary line of $n.360^{\circ}$ - A is coincident with that of -A. The value of each function of 1. 360° - A is thus the same as the value of the corresponding function of -A both in magnitude and in sign; hence $$\sin(n.360^{\circ} - A) = \sin(-A) = -\sin A;$$ $\cos(n.360^{\circ} - A) = \cos(-A) = \cos A;$ $\tan(n.360^{\circ} - A) = \tan(-A) = -\tan A.$ - 106. We can always express the functions of any angle in terms of the functions of some positive acute angle. In the arrangement of the work it is advisable to follow a uniform plan. - (1) If the angle is negative, use the relations connecting the functions of -A and A. [Art. 99.] Thus $$\sin(-30^{\circ}) = -\sin 30^{\circ} = -\frac{1}{2};$$ $\cos(-845^{\circ}) = \cos 845^{\circ}.$ (2) If the angle is greater than 360°, by taking off multiples of 360° the angle may be replaced by a coterminal angle less than 360°. [Art. 103.] Thus $$\tan 735^{\circ} = \tan (2 \times 360^{\circ} + 15^{\circ}) = \tan 15^{\circ}$$. (3) If the angle is still greater than 180°, use the relations connecting the functions of $180^{\circ} + A$ and A. [Art. 97.] Thus $$\cot 585^{\circ} = \cot (360^{\circ} + 225^{\circ}) = \cot 225^{\circ}$$ = $\cot (180^{\circ} + 45^{\circ}) = \cot 45^{\circ} = 1$. (4) If the angle is still greater than 90°, use the relations connecting the functions of $180^{\circ} - A$ and A. [Art. 92.] Thus $$\begin{aligned} \cos 675^\circ &= \cos \left(360^\circ + 315^\circ\right) = \cos 315^\circ \\ &= \cos \left(180^\circ + 135^\circ\right) = -\cos 135^\circ \\ &= -\cos \left(180^\circ - 45^\circ\right) = \cos 45^\circ = \frac{1}{\sqrt{2}}. \end{aligned}$$ Example. Express $\sin (-1190^{\circ})$, $\tan 1000^{\circ}$, $\cos (-980^{\circ})$ as functions of positive acute angles. $$\sin (-1190^{\circ}) = -\sin 1190^{\circ} = -\sin (3 \times 360^{\circ} + 110^{\circ}) = -\sin 110^{\circ}$$ $$= -\sin (180^{\circ} - 70^{\circ}) = -\sin 70^{\circ}.$$ $$\tan 1000^{\circ} = \tan (2 \times 360^{\circ} + 280^{\circ}) = \tan 280^{\circ}$$ $$= \tan (180^{\circ} + 100^{\circ}) = \tan 100^{\circ}$$ $$= \tan (180^{\circ} - 80^{\circ}) = -\tan 80^{\circ}.$$ $$\cos (-980^{\circ}) = \cos 980^{\circ} = \cos (2 \times 360^{\circ} + 260^{\circ}) = \cos 260^{\circ}$$ $$= \cos (180^{\circ} + 80^{\circ}) = -\cos 80^{\circ}.$$ 107. From the investigations of this chapter we see that the number of angles which have the same circular function is unlimited. Thus if $\tan \theta = 1$, θ may be any one of the angles coterminal with 45° or 225°. Example. Draw the boundary lines of A when $\sin A = \frac{\sqrt{3}}{2}$, and write down all the angles numerically less than 360° which satisfy the equation. Since $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$, if we draw OP making $\angle XOP = 60^{\circ}$, then OPis one position of the boundary line. Again, $\sin 60^\circ = \sin (180^\circ - 60^\circ) = \sin 120^\circ$, so that another position of the boundary line will be found by making $XOP' = 120^{\circ}$. There will be no position of the boundary line in the third or fourth quadrant, since in these quadrants the sine is negative. Thus in one complete revolution OP and OP' are the only two positions of the boundary line of the angle A. Hence the positive angles are 60° and 120°; and the negative angles are $-(360^{\circ}-120^{\circ})$ and $-(360^{\circ}-60^{\circ})$; that is, -240° and -300° . ### EXAMPLES. X. b. Find the numerical value of 3. $$\cos{(-780^{\circ})}$$. 4. $$\sin(-870^{\circ})$$. 5. 7. $$\csc(-660^{\circ})$$. 9. $$\csc(-765^{\circ})$$. 15. $\sec(-1575^{\circ})$. 16. $$\sin \frac{15\pi}{4}$$. 17. $$\cot \frac{23\pi}{4}$$. 18. $$\sec \frac{7\pi}{2}$$. 19. $$\cot \frac{16\pi}{2}$$. 20. $$\sec\left(\frac{3\pi}{2} + \frac{\pi}{3}\right)$$. Find all the angles numerically less than 360° which satisfy the equations : 21. $$\cos \theta = \frac{\sqrt{3}}{2}$$. 22. $\sin \theta = -\frac{1}{2}$. 23. $$\tan \theta = -\sqrt{3}$$. 24. $\cot \theta = -1$. If A is less than 90°, prove geometrically 25. $$\sec (A - 180^{\circ}) = -\sec A$$. 26. $$\tan (270^{\circ} + A) = -\cot A$$. 27. $$\cos (A - 90^\circ) = \sin A$$. 28. Prove that $$\tan A + \tan (180^{\circ} -
A) + \cot (90^{\circ} + A) = \tan (360^{\circ} - A)$$ 29. Shew that $$\frac{\sin{(180^{\circ} - A)}}{\tan{(180^{\circ} + A)}} \cdot \frac{\cot{(90^{\circ} - A)}}{\tan{(90^{\circ} + A)}} \cdot \frac{\cos{(360^{\circ} - A)}}{\sin{(-A)}} = \sin{A}.$$ Express in the simplest form 30. $$\frac{\sin(-A)}{\sin(180^\circ + A)} - \frac{\tan(90^\circ + A)}{\cot A} + \frac{\cos A}{\sin(90^\circ + A)}$$. 31. $$\frac{\csc(180^{\circ} - A)}{\sec(180^{\circ} + A)} \cdot \frac{\cos(-A)}{\cos(90^{\circ} + A)}$$. 32. $$\frac{\cos(90^\circ + A)\sec(-A)\tan(180^\circ - A)}{\sec(360^\circ + A)\sin(180^\circ + A)\cot(90^\circ - A)}.$$ 33. Prove that $$\sin\left(\frac{\pi}{2} + \theta\right) \cos\left(\pi - \theta\right) \cot\left(\frac{3\pi}{2} + \theta\right)$$ $$= \sin\left(\frac{\pi}{2} - \theta\right) \sin\left(\frac{3\pi}{2} - \theta\right) \cot\left(\frac{\pi}{2} + \theta\right).$$ 34. When $a = \frac{11\pi}{4}$, find the numerical value of $$\sin^2 a - \cos^2 a + 2 \tan a - \sec^2 a$$. ### CHAPTER XI. #### FUNCTIONS OF COMPOUND ANGLES. [If preferred, Chapters XIII, XIV, XV may be taken before Chapters XI and XII.] - 108. When an angle is made up by the algebraical sum of two or more angles it is called a **compound angle**; thus A + B, A B, and A + B C are compound angles. - 109. Hitherto we have only discussed the properties of the functions of single angles, such as A, B, a, θ . In the present chapter we shall prove some fundamental properties relating to the functions of compound angles. We shall begin by finding expressions for the sine, cosine, and tangent of A + B and A B in terms of the functions of A and B. It may be useful to caution the student against the prevalent mistake of supposing that a function of A + B is equal to the sum of the corresponding functions of A and B, and a function of A - B to the difference of the corresponding functions. Thus $\sin (A + B)$ is not equal to $\sin A + \sin B$, and $\cos (A - B)$ is not equal to $\cos A - \cos B$. A numerical instance will illustrate this. Thus if $A = 60^{\circ}$, $B = 30^{\circ}$, then $A + B = 90^{\circ}$, so that $\cos (A + B) = \cos 90^{\circ} = 0$; but $\cos A + \cos B = \cos 60^{\circ} + \cos 30^{\circ} = \frac{1}{2} + \frac{\sqrt{3}}{2}$. Hence $\cos(A + B)$ is not equal to $\cos A + \cos B$. In like manner, $\sin (A+A)$ is not equal to $\sin A + \sin A$; that is, $\sin 2A$ is not equal to $2 \sin A$. Similarly $\tan 3A$ is not equal to $3 \tan A$. 110. To prove the formulæ $$\sin (A + B) = \sin A \cos B + \cos A \sin B$$, $\cos (A + B) = \cos A \cos B - \sin A \sin B$. Let $\angle LOM = A$, and $\angle MON = B$; then $\angle LON = A + B$. In ON, the boundary line of the compound angle A+B, take any point P, and draw PQ and PR perpendicular to OL and OM respectively; also draw RS and RT perpendicular to OL and PQ respectively. By definition, $$\sin(A+B) = \frac{PQ}{OP} = \frac{RS + PT}{OP} = \frac{RS}{OP} + \frac{PT}{OP}$$ $$= \frac{RS}{OR} \cdot \frac{OR}{OP} + \frac{PT}{PR} \cdot \frac{PR}{OP}$$ $=\sin A \cdot \cos B + \cos TPR \cdot \sin B$. But $$\angle TPR = 90^{\circ} - \angle TRP = \angle TRO = \angle ROS = A;$$ $\therefore \sin(A+B) = \sin A \cos B + \cos A \sin B.$ Also $$\cos (A + B) = \frac{\partial Q}{\partial P} = \frac{\partial S - TR}{\partial P} = \frac{\partial S}{\partial P} - \frac{TR}{\partial P}$$ $= \frac{\partial S}{\partial R} \cdot \frac{\partial R}{\partial P} - \frac{TR}{PR} \cdot \frac{PR}{\partial P}$ $= \cos A \cdot \cos B - \sin TPR \cdot \sin B$ $= \cos A \cos B - \sin A \sin B$. 111. To prove the formulæ $$\sin (A - B) = \sin A \cos B - \cos A \sin B$$, $\cos (A - B) = \cos A \cos B + \sin A \sin B$. Let $\angle LOM = A$, and $\angle MON = B$; then $\angle LON = A - B$. In ON, the boundary line of the compound angle A-B, take any point P, and draw PQ and PR perpendicular to OL and OM respectively; also draw RS and RT perpendicular to OL and QP respectively. By definition, $$\sin(A - B) = \frac{PQ}{OP} = \frac{RS - PT}{OP} = \frac{RS}{OP} - \frac{PT}{OP}$$ $$= \frac{RS}{OR} \cdot \frac{OR}{OP} - \frac{PT}{PR} \cdot \frac{PR}{OP}$$ $=\sin A \cdot \cos B - \cos TPR \cdot \sin B$. But $$\angle TPR = 90^{\circ} - \angle TRP = \angle MRT = \angle MOL = A$$; $\therefore \sin(A - B) = \sin A \cos B - \cos A \sin B$. Also $$\cos(A - B) = \frac{\partial Q}{\partial P} = \frac{\partial S + RT}{\partial P} = \frac{\partial S}{\partial P} + \frac{RT}{\partial P}$$ $= \frac{\partial S}{\partial R} \cdot \frac{\partial R}{\partial P} + \frac{RT}{RP} \cdot \frac{RP}{\partial P}$ $= \cos A \cdot \cos B + \sin TPR \cdot \sin B$ $= \cos A \cos B + \sin A \sin B$. - 112. The expansions of $\sin{(A \pm B)}$ and $\cos{(A \pm B)}$ are frequently called the "Addition Formulæ." We shall sometimes refer to them as the "A + B" and "A B" formulæ. - 113. In the foregoing geometrical proofs we have supposed that the angles A, B, A+B are all less than a right angle, and that A-B is positive. If the angles are not so restricted some modification of the figures will be required. It is however unnecessary to consider these cases in detail, as in Chap. XXII. we shall shew by the Method of Projections that the Addition Formulæ hold universally. In the meantime the student may assume that they are always true. Example 1. Find the value of cos 75°. $$\cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ}$$ $1 \quad \sqrt{3} \quad 1 \quad 1 \quad \sqrt{3} - 1$ $$= \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \cdot \frac{1}{2} = \frac{\sqrt{3} - 1}{2\sqrt{2}}.$$ Example 2. If $\sin A = \frac{4}{5}$ and $\sin B = \frac{5}{13}$, find $\sin (A - B)$. $$\sin (A - B) = \sin A \cos B - \cos A \sin B.$$ But $$\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \frac{16}{25}} = \frac{3}{5};$$ and $$\cos B = \sqrt{1 - \sin^2 B} = \sqrt{1 - \frac{25}{169}} = \frac{12}{13};$$ 4 12 3 5 33 $$\therefore \sin (A - B) = \frac{4}{5} \cdot \frac{12}{13} - \frac{3}{5} \cdot \frac{5}{13} = \frac{33}{65}.$$ Note. Strictly speaking $\cos A = \pm \frac{3}{5}$ and $\cos B = \pm \frac{12}{13}$, so that $\sin (A - B)$ has *four* values. We shall however suppose that in similar cases only the positive value of the square root is taken. 114. To prove that $\sin(A+B)\sin(A-B) = \sin^2 A - \sin^2 B$. The first side = $$(\sin A \cos B + \cos A \sin B)(\sin A \cos B - \cos A \sin B)$$ = $\sin^2 A \cos^2 B - \cos^2 A \sin^2 B$ = $\sin^2 A (1 - \sin^2 B) - (1 - \sin^2 A) \sin^2 B$ = $\sin^2 A - \sin^2 B$. ### EXAMPLES. XI. a. [The examples printed in more prominent type are important, and should be regarded as standard formulæ.] Prove that 1. $$\sin(A+45^\circ) = \frac{1}{\sqrt{2}}(\sin A + \cos A)$$. $$V$$ 2. $\cos(A + 45^\circ) = \frac{1}{\sqrt{2}}(\cos A - \sin A)$. 3. $$2\sin(30^{\circ} - A) = \cos A - \sqrt{3}\sin A$$. **4.** If $$\cos A = \frac{4}{5}$$, $\cos B = \frac{3}{5}$, find $\sin (A + B)$ and $\cos (A - B)$. 5. If $$\sin A = \frac{3}{5}$$, $\cos B = \frac{12}{13}$, find $\cos (A + B)$ and $\sin (A - B)$. **6.** If $$\sec A = \frac{17}{8}$$, cosec $B = \frac{5}{4}$, find $\sec (A + B)$. Prove that 7. $$\sin 75^\circ = \cos 15^\circ = \frac{\sqrt{3}+1}{2\sqrt{2}}$$. 8. $$\sin 15^\circ = \cos 75^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$$. $$\sqrt{9}. \quad \frac{\sin{(\alpha+\beta)}}{\cos{\alpha}\cos{\beta}} = \tan{\alpha} + \tan{\beta}.$$ $$\sqrt{10. \frac{\sin (a-\beta)}{\sin a \sin \beta}} = \cot \beta - \cot a.$$ $$\bigvee 11. \frac{\cos(a-\beta)}{\cos a \sin \beta} = \cot \beta + \tan a.$$ $$\chi$$ 12. $\cos(\mathbf{A}+\mathbf{B})\cos(\mathbf{A}-\mathbf{B})=\cos^2\mathbf{A}-\sin^2\mathbf{B}$. $$13. \sin (A+B) \sin (A-B) = \cos^2 B - \cos^2 A.$$ **14.** $$\cos(45^{\circ} - A) - \sin(45^{\circ} + A) = 0.$$ $$\sqrt{15}$$. $\cos(45^{\circ} + A) + \sin(A - 45^{\circ}) = 0$. ✓ 16. $$\cos(A - B) - \sin(A + B) = (\cos A - \sin A)(\cos B - \sin B)$$. 17. $$\cos(A+B) + \sin(A-B) = (\cos A + \sin A)(\cos B = \sin B)$$. Prove the following identities: 18. $$2\sin(A+45^\circ)\sin(A-45^\circ)=\sin^2A-\cos^2A$$. 19. $$2\cos\left(\frac{\pi}{4} + a\right)\cos\left(\frac{\pi}{4} - a\right) = \cos^2 a - \sin^2 a$$. 20. $$2\sin\left(\frac{\pi}{4}+a\right)\cos\left(\frac{\pi}{4}+\beta\right) = \cos\left(a+\beta\right) + \sin\left(a-\beta\right)$$. 21. $$\frac{\sin(\beta - \gamma)}{\cos\beta\cos\gamma} + \frac{\sin(\gamma - a)}{\cos\gamma\cos\alpha} + \frac{\sin(a - \beta)}{\cos\alpha\cos\beta} = 0.$$ 115. To expand tan(A+B) in terms of tan A and tan B. $$\tan (A+B) = \frac{\sin (A+B)}{\cos (A+B)} = \frac{\sin A \cos B + \cos A \sin B}{\cos A \cos B - \sin A \sin B}$$ To express this fraction in terms of *tangents*, divide each term of numerator and denominator by $\cos A \cos B$; $$\therefore \tan (A+B) = \frac{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}}{1 - \frac{\sin A}{\cos A} \cdot \frac{\sin B}{\cos B}};$$ that is, $$\tan (A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$ A geometrical proof of this result is given in Chap. XXII. Similarly, we may prove that $$\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}.$$ Example. Find the value of tan 75°. $$\tan 75^{\circ} = \tan (45^{\circ} + 30^{\circ}) = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}}$$ $$= \frac{1 + \frac{1}{\sqrt{3}}}{1 - \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}$$ $$= \frac{(\sqrt{3} + 1)(\sqrt{3} + 1)}{3 - 1} = \frac{4 + 2\sqrt{3}}{2}$$ $$= 2 + \sqrt{3}.$$ 116. To expand $\cot(A+B)$ in terms of $\cot A$ and $\cot B$. $$\cot (A+B) = \frac{\cos (A+B)}{\sin (A+B)} = \frac{\cos A \cos B - \sin A \sin B}{\sin A \cos B + \cos A \sin B}.$$ To express this fraction in terms of *cotangents*, divide each term of numerator and denominator by $\sin A \sin B$; $$\therefore \cot(A+B) = \frac{\frac{\cos A \cos B}{\sin A \sin B} - 1}{\frac{\cos B}{\sin B} + \frac{\cos A}{\sin A}} = \frac{\cot A \cot B - 1}{\cot B + \cot A}.$$ Similarly, we may prove that
$$\cot (A - B) = \frac{\cot A \cot B + 1}{\cot B - \cot A}.$$ 117. To find the expansion of $\sin (A + B + C)$. $\sin (A + B + C) = \sin \{(A + B) + C\}$ $= \sin (A + B) \cos C + \cos (A + B) \sin C$ $= (\sin A \cos B + \cos A \sin B) \cos C + (\cos A \cos B - \sin A \sin B) \sin C$ $= \sin A \cos B \cos C + \cos A \sin B \cos C + (\cos A \cos B \sin C - \sin A \sin B \sin C)$ 118. To find the expansion of tan(A+B+C). $$\tan (A+B+C) = \tan \{(A+B)+C\} = \frac{\tan (A+B) + \tan C}{1-\tan (A+B)\tan C}$$ $$= \frac{\frac{\tan A + \tan B}{1-\tan A \tan B} + \tan C}{1-\frac{\tan A + \tan B}{1-\tan A \tan B} \cdot \tan C}$$ $$= \frac{\tan A + \tan B}{1-\tan A \tan B} \cdot \tan C$$ $$= \frac{\tan A + \tan B + \tan C - \tan A \tan B \tan C}{1-\tan A \tan B - \tan B \tan C - \tan C}$$ Cor. If $A+B+C=180^\circ$, then $\tan{(A+B+C)}=0$; hence the numerator of the above expression must be zero. $$\therefore$$ tan $A + \tan B + \tan C = \tan A \tan B \tan C$. ### EXAMPLES. XI. b. [The examples printed in more prominent type are important, and should be regarded as standard formulæ. Find $\tan (A+B)$ when $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{2}$. 2. If $\tan A = \frac{4}{2}$, and $B = 45^{\circ}$, find $\tan(A - B)$. 3. If $\cot A = \frac{5}{7}$, $\cot B = \frac{7}{5}$, find $\cot (A+B)$ and $\tan (A+B)$. \checkmark 4. If $\cot A = \frac{11}{2}$, $\tan B = \frac{7}{24}$, find $\cot (A - B)$ and $\tan (A + B)$. 5. $\tan (45^{\circ} + A) = \frac{1 + \tan A}{1 - \tan A}$ 6. $\tan (45^{\circ} - A) = \frac{1 - \tan A}{1 + \tan A}$ - V 7. $\cot\left(\frac{\pi}{4}-\theta\right) = \frac{\cot\theta+1}{\cot\theta-1}$. - 8. $\cot\left(\frac{\pi}{4} + \theta\right) = \frac{\cot\theta 1}{\cot\theta + 1}$ $\tan 15^{\circ} = 2 - \sqrt{3}$. - 10. $\cot 15^{\circ} = 2 + \sqrt{3}$. - Find the expansions of $\cos(A+B+C)$ and $\sin(A-B+C)$. Express $\tan (A - B - C)$ in terms of $\tan A$, $\tan B$, $\tan C$. 13. Express $\cot (A + B + C)$ in terms of $\cot A$, $\cot B$, $\cot C$. Beginners not unfrequently find a difficulty in the converse use of the A+B and A-B formulæ; that is, they fail to recognise when an expression is merely an expansion belonging to one of the standard forms. Example 1. Simplify $\cos(\alpha - \beta)\cos(\alpha + \beta) - \sin(\alpha - \beta)\sin(\alpha + \beta)$. This expression is the expansion of the cosine of the compound angle $(\alpha + \beta) + (\alpha - \beta)$, and is therefore equal to $\cos \{(\alpha + \beta) + (\alpha - \beta)\}$; that is, to cos 2a. Example 2. Shew that $\frac{\tan A + \tan 2A}{1 - \tan A \tan 2A} = \tan 3A$. By Art. 115, the first side is the expansion of $\tan (A + 2A)$, and is therefore equal to tau 3A. XI.] Example 3. Prove that $\cot 2A + \tan A = \csc 2A$. The first side = $$\frac{\cos 2A}{\sin 2A} + \frac{\sin A}{\cos A} = \frac{\cos 2A}{\sin 2A} \frac{\cos A + \sin 2A}{\sin 2A} \frac{A}{\cos A}$$ $$= \frac{\cos (2A - A)}{\sin 2A \cos A} = \frac{\cos A}{\sin 2A \cos A}$$ $$= \frac{1}{\sin 2A} = \csc 2A.$$ Example 4. Prove that $\cos 4\theta \cos \theta + \sin 4\theta \sin \theta = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$. The first side = $\cos (4\theta - \theta) = \cos 3\theta = \cos (2\theta + \theta)$ = $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$. ### EXAMPLES. XI. c. Prove the following identities: 1. $$\cos(A+B)\cos B + \sin(A+B)\sin B = \cos A$$. $$\sqrt{2}$$. $\sin 3A \cos A - \cos 3A \sin A = \sin 2A$. $$\sqrt{3}$$. $\cos 2a \cos a + \sin 2a \sin a = \cos a$. ✓ 4. $$\cos(30^\circ + A)\cos(30^\circ - A) - \sin(30^\circ + A)\sin(30^\circ - A) = \frac{1}{2}$$. 5. $$\sin(60^{\circ} - A)\cos(30^{\circ} + A) + \cos(60^{\circ} - A)\sin(30^{\circ} + A) = 1$$. $$\checkmark 6. \frac{\cos 2a}{\sec a} - \frac{\sin 2a}{\csc a} = \cos 3a.$$ $$\sqrt{-7}. \quad \frac{\tan(\alpha-\beta)+\tan\beta}{1-\tan(\alpha-\beta)\tan\beta}=\tan\alpha.$$ $$V 9. \quad \frac{\tan 4A - \tan 3A}{1 + \tan 4A \tan 3A} = \tan A.$$ $$10. \cot \theta - \cot 2\theta = \csc 2\theta.$$ 11. $$1 + \tan 2\theta \tan \theta = \sec 2\theta$$. 12. $$1 + \cot 2\theta \cot \theta = \csc 2\theta \cot \theta$$. 13. $$\sin 2\theta \cos \theta + \cos 2\theta \sin \theta = \sin 4\theta \cos \theta - \cos 4\theta \sin \theta$$. 14. $$\cos 4a \cos a - \sin 4a \sin a = \cos 3a \cos 2a - \sin 3a \sin 2a$$. ### Functions of Multiple Angles. 120. To express sin 2.1 in terms of sin 1 and cos 1. $$\sin 2A = \sin (A + A) = \sin A \cos A + \cos A \sin A;$$ that is, $$\sin 2A = 2 \sin A \cos A$$. Since A may have any value, this is a perfectly general formula for the sine of an angle in terms of the sine and cosine of the half angle. Thus if 2A be replaced by θ , we have $$\sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}.$$ Similarly, $\sin 4A = 2 \sin 2A \cos 2A$ $=4\sin A\cos A\cos 2A$. 121. To express cos 2A in terms of cos A and sin A. $$\cos 2A = \cos (A + A) = \cos A \cos A - \sin A \sin A;$$ that is, There are two other useful forms in which cos 2A may be expressed, one involving cos A only, the other sin A only. Thus from (1), $$\cos 2A = \cos^2 A - (1 - \cos^2 A);$$ that is, $$\cos 2A = 2\cos^2 A - 1$$(2). Again, from (1), $$\cos 2A = (1 - \sin^2 A) - \sin^2 A$$; that is, $$\cos 2A = 1 - 2\sin^2 A$$(3). From formulae (2) and (3), we obtain by transposition From formulae (2) and (5), we obtain by transposition $$1 + \cos 2A = 2 \cos^2 A$$(4), and $$1 - \cos 2A = 2 \sin^2 A$$(5). By division, $$\frac{1 - \cos 2A}{1 + \cos 2A} = \tan^2 A \qquad(6).$$ Example. Express cos 4a in terms of sin a. From (3), $$\cos 4\alpha = 1 - 2 \sin^2 2\alpha = 1 - 2 (4 \sin^2 \alpha \cos^2 \alpha)$$ = $1 - 8 \sin^2 \alpha (1 - \sin^2 \alpha)$ = $1 - 8 \sin^2 \alpha + 8 \sin^4 \alpha$. 122. The six formulae of the last article deserve special attention. They are universally true so long as one of the angles involved is double of the other. For instance, $$\cos a = \cos^{2} \frac{a}{2} - \sin^{2} \frac{a}{2},$$ $$\cos a = 2 \cos^{2} \frac{a}{2} - 1, \qquad \cos a = 1 - 2 \sin^{2} \frac{a}{2},$$ $$1 + \cos \theta = 2 \cos^{2} \frac{\theta}{2}, \qquad 1 - \cos \theta = 2 \sin^{2} \frac{\theta}{2}.$$ Example. If $\cos \theta = 28$, find the value of $\tan \frac{\theta}{2}$. $$\begin{split} \tan^2\!\frac{\theta}{2} = & \frac{1 - \cos\theta}{1 + \cos\theta} = \frac{1 - \frac{28}{1 + \frac{28}{128}} = \frac{72}{1 \cdot 28} = \frac{9}{16} \; ; \\ \therefore & \tan\frac{\theta}{2} = \pm\frac{3}{4} \; . \end{split}$$ 123. To express tan 2.1 in terms of tan 1. 100-1-2 $$\tan 2A = \tan (A + A) = \frac{\tan A + \tan A}{1 - \tan A};$$ that is, $$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}.$$ 124. To express sin 2A and cos 2A in terms of tan A. $$\sin 2A = 2 \sin A \cos A = 2 \frac{\sin A}{\cos A} \cos^2 A = 2 \tan A \cos^2 A;$$ $$\therefore \sin 2A = \frac{2 \tan A}{\sec^2 A} = \frac{2 \tan A}{1 + \tan^2 A}.$$ Again, $$\cos 2A = \cos^2 A - \sin^2 A = \cos^2 A (1 - \tan^2 A);$$ $$\therefore \cos 2A = \frac{1 - \tan^2 A}{\sec^2 A} = \frac{1 - \tan^2 A}{1 + \tan^2 A}.$$ Example. Show that $\frac{1 - \tan^2(45^\circ - A)}{1 + \tan^2(45^\circ - A)} = \sin 2A$. The first side = $\cos 2 (45^{\circ} - A) = \cos (90^{\circ} - 2A) = \sin 2A$. # EXAMPLES. XI. d. [The examples printed in more prominent type are important, and should be regarded as standard formula.] $$\checkmark$$ 1. If $\cos A = \frac{1}{3}$, find $\cos 2A$. 2. Find cos 2A when sin $$A = \frac{2}{5}$$. 3. If $$\sin A = \frac{3}{5}$$, find $\sin 2A$. 4. If $$\tan \theta = \frac{1}{3}$$, find $\tan 2\theta$. 5. If $$\tan \theta = \frac{1}{7}$$, find $\sin 2\theta$ and $\cos 2\theta$. 6. If $$\cos a = \frac{4}{5}$$, find $\tan \frac{a}{2}$. 7. Find $$\tan A$$ when $\cos 2A = 96$. Prove the following identities: 10. $$\frac{1-\cos A}{\sin A} = \tan \frac{A}{2}.$$ 11. $$\frac{1+\cos A}{\sin A} = \cot \frac{A}{2}.$$ 12. $$2 \csc 2a = \sec a \csc a$$. 13. $$\tan a + \cot a = 2 \csc 2a$$. 14. $$\cos^4 a - \sin^4 a = \cos 2a$$. 15. $$\cot \alpha - \tan \alpha = 2 \cot 2\alpha$$. 16. $$\cot 2\mathbf{A} = \frac{\cot^2 \mathbf{A} - 1}{2 \cot \mathbf{A}}$$. 17. $$\frac{\cot A - \tan A}{\cot A + \tan A} = \cos 2A.$$ 18. $$\frac{1 + \cot^2 A}{2 \cot A} = \csc 2A$$. 19. $$\frac{\cot^2 A + 1}{\cot^2 A - 1} = \sec 2A$$. $$20. \quad \frac{1 + \sec \theta}{\sec \theta} = 2 \cos^2 \frac{\theta}{2}.$$ 21. $$\frac{\sec \theta - 1}{\sec \theta} = 2 \sin^2 \frac{\theta}{2}.$$ $$22, \quad \frac{2 - \sec^2 \theta}{\sec^2 \theta} = \cos 2\theta.$$ 23. $$\frac{\csc^2 \theta - 2}{\csc^2 \theta} = \cos 2\theta.$$ Prove the following identities: 24. $$\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)^2 = 1 + \sin A$$. 25. $$\left(\sin\frac{A}{2} - \cos\frac{A}{2}\right)^2 = 1 - \sin A$$. 26. $$\frac{\cos 2a}{1 + \sin 2a} = \tan (45^{\circ} - a)$$. 27. $$\frac{\cos 2a}{1-\sin 2a} = \cot (45^{\circ} - a)$$. **28.** $$\sin 8A = 8 \sin A \cos A \cos 2A \cos 4A$$. **29.** $$\cos 4A = 8\cos^4 A - 8\cos^2 A + 1$$. **30.** $$\sin A = 1 - 2\sin^2\left(45^\circ - \frac{A}{2}\right)$$. 31. $$\cos^2\left(\frac{\pi}{4}-a\right)-\sin^2\left(\frac{\pi}{4}-a\right)=\sin 2a.$$ 32. $$\tan (45^{\circ} + A) - \tan (45^{\circ} - A) = 2 \tan 2A$$. 33. $$\tan (45^{\circ} + A) + \tan (45^{\circ} - A) = 2 \sec 2A$$. # 125. Functions of 3A. $$\sin 3A = \sin (2A + A) = \sin 2A \cos A + \cos 2A \sin A$$ $$= 2 \sin A \cos^2 A + (1 - 2 \sin^2 A) \sin A$$ $$= 2 \sin A (1 - \sin^2 A) + (1 - 2 \sin^2 A) \sin A;$$ $$= 3 \sin A - 4 \sin^3 A.$$ Similarly it may be proved that $$\cos 3A = 4\cos^3 A - 3\cos A.$$ Again, $$\tan 3A = \tan (2A + A) = \frac{\tan 2A + \tan A}{1 - \tan 2A \tan A}$$: by putting $$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A},$$ we obtain on reduction $$\tan 3A = \frac{3 \tan A - \tan^3 A}{1 - 3 \tan^2 A}.$$ These formulæ are perfectly general and may be applied to cases of any two angles, one of which is three times the other; thus $$\cos 6a = 4 \cos^3 2a - 3 \cos 2a$$; $\sin 9A = 3 \sin 3A - 4 \sin^3 3A$. 126. To
find the value of sin 18°. Let $$A = 18^{\circ}$$, then $5A = 90^{\circ}$, so that $2A = 90^{\circ} - 3A$. $\therefore \sin 2A = \sin (90^{\circ} - 3A) = \cos 3A$: $\therefore 2 \sin A \cos A = 4 \cos^3 A - 3 \cos A$. Divide by cos A (which is not equal to zero); $$\therefore 2 \sin A = 4 \cos^2 A - 3 = 4 (1 - \sin^2 A) - 3;$$ $$\therefore 4 \sin^2 A + 2 \sin A - 1 = 0;$$ $$\therefore \sin A = \frac{-2 \pm \sqrt{4 + 16}}{8} = \frac{-1 \pm \sqrt{5}}{4}.$$ Since 18° is an acute angle, we take the positive sign: $$\therefore \sin 18^\circ = \frac{\sqrt{5-1}}{4}.$$ Example. Find cos 18° and sin 54°. $$\cos 18^\circ = \sqrt{1 - \sin^2 18^\circ} = \sqrt{1 - \frac{6 - 2\sqrt{5}}{16}} = \frac{\sqrt{10 + 2\sqrt{5}}}{4}.$$ Since 54° and 36° are complementary, $\sin 54^{\circ} = \cos 36^{\circ}$. Now $$\cos 36^{\circ} - 1 - 2 \sin^{2} 18^{\circ} = 1 - \frac{2 (6 - 2 \sqrt{5})}{16} = \frac{\sqrt{5} + 1}{4}$$; $\therefore \sin 54^{\circ} = \frac{\sqrt{5} + 1}{4}$. ## EXAMPLES. XI. e. - 1. If $\cos A = \frac{1}{3}$, find $\cos 3A$. - 2. Find sin 3.4 when sin $A = \frac{3}{5}$. - 3. Given $\tan A = 3$, find $\tan 3A$. Prove the following identities: 4. $$\frac{\sin 3A}{\sin A} - \frac{\cos 3A}{\cos A} = 2$$. 5. $$\cot 3A = \frac{\cot^3 A - 3 \cot A}{3 \cot^2 A - 1}$$. 6. $$\frac{3\cos a + \cos 3a}{3\sin a - \sin 3a} = \cot^3 a.$$ 7. $$\frac{\sin 3a + \sin^3 a}{\cos^3 a - \cos 3a} = \cot a.$$ 8. $$\frac{\cos^3 a - \cos 3a}{\cos a} + \frac{\sin^3 a + \sin 3a}{\sin a} = 3.$$ 9. $$\sin 18^\circ + \sin 30^\circ = \sin 54^\circ$$, 10. $\cos 36^\circ - \sin 18^\circ = \frac{1}{2}$. 11. $$\cos^2 36^\circ + \sin^2 18^\circ = \frac{3}{4}$$. 12. $$4 \sin 18^{\circ} \cos 36^{\circ} = 1.$$ *127. The following examples further illustrate the formulæ proved in this chapter. Example 1. Shew that $\cos^6 \alpha + \sin^6 \alpha = 1 - \frac{3}{4} \sin^2 2\alpha$. The first side = $$(\cos^2 \alpha + \sin^2 \alpha) (\cos^4 \alpha + \sin^4 \alpha - \cos^2 \alpha \sin^2 \alpha)$$ = $(\cos^2 \alpha + \sin^2 \alpha)^2 - 3 \cos^2 \alpha \sin^2 \alpha$ = $1 - \frac{3}{4} (4 \cos^2 \alpha \sin^2 \alpha)$ = $1 - \frac{3}{4} \sin^2 2\alpha$. Example 2. Prove that $\frac{\cos A - \sin A}{\cos A + \sin A} = \sec 2A - \tan 2A$. The right side = $$\frac{1}{\cos 2A} - \frac{\sin 2A}{\cos 2A} = \frac{1 - \sin 2A}{\cos 2A}$$, and since $\cos 2A = \cos^2 A - \sin^2 A = (\cos A + \sin A)(\cos A - \sin A)$, this suggests that we should multiply the numerator and denominator of the left side by $\cos A - \sin A$; thus the first side = $$\frac{(\cos A - \sin A)(\cos A - \sin A)}{(\cos A + \sin A)(\cos A - \sin A)}$$ $$= \frac{\cos^2 A + \sin^2 A - 2\cos A\sin A}{\cos^2 A - \sin^2 A}$$ $$= \frac{1 - \sin 2A}{\cos 2A} = \sec 2A - \tan 2A,$$ Example 3. Shew that $$\frac{1}{\tan 3A - \tan A} - \frac{1}{\cot 3A - \cot A} = \cot 2A$$. The first side = $$\frac{1}{\frac{\sin 3A}{\cos 3A} - \frac{\sin A}{\cos A}} - \frac{1}{\frac{\cos 3A}{\sin 3A} - \frac{\cos A}{\sin A}}$$ $$= \frac{\cos 3A \cos A}{\sin 3A \cos A - \cos 3A \sin A} - \frac{\sin 3A \sin A}{\cos 3A \sin A - \sin 3A \cos A}$$ $$= \frac{\cos 3A \cos A + \sin 3A \sin A}{\sin 3A \cos A - \cos 3A \sin A}$$ $$= \frac{\cos (3A - A)}{\sin (3A - A)} = \frac{\cos 2A}{\sin 2A} = \cot 2A.$$ Note. This example has been given to emphasize the fact that in identities involving the functions of 2A and 3A it is sometimes best not to substitute their equivalents in terms of functions of A. ### *EXAMPLES. XI. f. Prove the following identities: - 1. $\tan 2A \sec A \sin A = \tan A \sec 2A$. - 2. $\tan 2A + \cos A \csc A = \cot A \sec 2.1$. 3. $$\frac{1-\cos 2\theta + \sin 2\theta}{1+\cos 2\theta + \sin 2\theta} = \tan \theta.$$ 4. $$\frac{1+\cos\theta+\cos\frac{\theta}{2}}{\sin\theta+\sin\frac{\theta}{2}}=\cot\frac{\theta}{2}.$$ 5. $$\cos^6 a - \sin^6 a = \cos 2a \left(1 - \frac{1}{4}\sin^2 2a\right)$$. 6. $$4(\cos^6\theta + \sin^6\theta) = 1 + 3\cos^2 2\theta$$. 7. $$\frac{\cos 3a + \sin 3a}{\cos a - \sin a} = 1 + 2\sin 2a$$. 8. $$\frac{\cos 3a - \sin 3a}{\cos a + \sin a} = 1 - 2\sin 2a$$. 9. $$\frac{\cos a + \sin a}{\cos a - \sin a} = \tan 2a + \sec 2a.$$ Prove the following identities: 10. $$\cot \frac{a-1}{\cot a+1} = \frac{1-\sin 2a}{\cos 2a}.$$ 11. $$\frac{1+\sin\theta}{\cos\theta} = \frac{1+\tan\frac{\theta}{2}}{1-\tan\frac{\theta}{2}}.$$ 12. $$\frac{\cos\theta}{1-\sin\theta} = \frac{\cot\frac{\theta}{2}+1}{\cot\frac{\theta}{2}-1}.$$ 13. sec $$A - \tan A = \tan \left(45^{\circ} - \frac{A}{2}\right)$$. 14. $$\tan A + \sec A = \cot \left(45^{\circ} - \frac{A}{2}\right)$$. 15. $$\frac{1+\sin\theta}{1-\sin\theta} = \tan^2\left(\frac{\pi}{4} + \frac{\theta}{2}\right).$$ 16. $$(2\cos A + 1)(2\cos A - 1) = 2\cos 2A + 1$$. 17. $$\frac{\sin 2A}{1 + \cos 2A} \cdot \frac{\cos A}{1 + \cos A} = \tan \frac{A}{2}$$. 18. $$\frac{\sin 2A}{1 - \cos 2A} \cdot \frac{1 - \cos A}{\cos A} = \tan \frac{A}{2} \cdot \quad \chi$$ 19. $4 \sin^3 a \cos 3a + 4 \cos^3 a \sin 3a = 3 \sin 4a$. [Put $4 \sin^3 a = 3 \sin a - \sin 3a$ and $4 \cos^3 a = 3 \cos a + \cos 3a$.] 20. $\cos^3 a \cos 3a + \sin^3 a \sin 3a = \cos^3 2a$. 21. $$4(\cos^3 20^\circ + \cos^3 40^\circ) = 3(\cos 20^\circ + \cos 40^\circ)$$. 22. $$4(\cos^3 10^\circ + \sin^3 20^\circ) = 3(\cos 10^\circ + \sin 20^\circ)$$. 23. $\tan 3A - \tan 2A - \tan A = \tan 3A \tan 2A \tan A$. [Use $\tan 3A = \tan (2A + A)$.] 24. $$\frac{\cot \theta}{\cot \theta - \cot 3\theta} + \frac{\tan \theta}{\tan \theta - \tan 3\theta} = 1.$$ 25. $$\frac{1}{\tan 3\theta + \tan \theta} - \frac{1}{\cot 3\theta + \cot \theta} = \cot 4\theta.$$ [Some easy miscellaneous Examples on Chapters XI and XII will be found on pages 122_A, 122_B.] ## CHAPTER XII. #### TRANSFORMATION OF PRODUCTS AND SUMS. ### Transformation of products into sums or differences. 128. In the last chapter we have proved that $$\sin A \cos B + \cos A \sin B = \sin (A + B),$$ and $$\sin A \cos B - \cos A \sin B = \sin (A - B)$$. By addition, $$2 \sin A \cos B = \sin (A + B) + \sin (A - B) \dots (1);$$ by subtraction $$2\cos A \sin B = \sin (A+B) - \sin (A-B)$$(2). These formulæ enable us to express the product of a sine and cosine as the sum or difference of two sines. Again, $\cos A \cos B - \sin A \sin B = \cos (A + B)$, and $\cos A \cos B + \sin A \sin B = \cos (A - B)$. By addition, $$2\cos A\cos B = \cos (A+B) + \cos (A-B)...(3);$$ by subtraction, $$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$(4). These formulæ enable us to express - (i) the product of two cosines as the sum of two cosines; - (ii) the product of two sines as the difference of two cosines. - 129. In each of the four formula of the previous article it should be noticed that on the left side we have any two angles A and B, and on the right side the sum and difference of these angles. For practical purposes the following verbal statements of the results are more useful. $$2 \sin A \cos B = \sin (sum) + \sin (difference);$$ $2 \cos A \sin B = \sin (sum) - \sin (difference);$ $2 \cos A \cos B = \cos (sum) + \cos (difference);$ $2 \sin A \sin B = \cos (difference) - \cos (sum).$ N.B. In the last of these formulae, the difference precedes the sum. Example 1. $$2 \sin 7A \cos 4A = \sin (sum) + \sin (difference)$$ = $\sin 11A + \sin 3A$. Example 2. $$2\cos 3\theta \sin 6\theta = \sin (3\theta + 6\theta) - \sin (3\theta - 6\theta)$$ = $\sin 9\theta - \sin (-3\theta)$ = $\sin 9\theta + \sin 3\theta$. Example 3. $$\cos \frac{3A}{2} \cos \frac{5A}{2} = \frac{1}{2} \left\{ \cos \left(\frac{3A}{2} + \frac{5A}{2} \right) + \cos \left(\frac{3A}{2} - \frac{5A}{2} \right) \right\}$$ = $\frac{1}{2} \left\{ \cos 4A + \cos \left(-A \right) \right\}$ = $\frac{1}{2} \left(\cos 4A + \cos A \right)$. Example 4. $$2 \sin 75^{\circ} \sin 15^{\circ} = \cos (75^{\circ} - 15^{\circ}) - \cos (75^{\circ} + 15^{\circ})$$ = $\cos 60^{\circ} - \cos 90^{\circ}$ = $\frac{1}{2} - 0$ = $\frac{1}{2}$. 130. After a little practice the student will be able to omit some of the steps and find the equivalent very rapidly. Example 1. $$2\cos\left(\frac{\pi}{4} + \theta\right)\cos\left(\frac{\pi}{4} - \theta\right) = \cos\frac{\pi}{2} + \cos 2\theta = \cos 2\theta$$ Example 2. $\sin\left(\alpha - 2\beta\right)\cos\left(\alpha + 2\beta\right) = \frac{1}{2}\left\{\sin 2\alpha + \sin\left(-4\beta\right)\right\}$ $= \frac{1}{2}\left(\sin 2\alpha - \sin 4\beta\right)$. #### EXAMPLES. XII. a. Express in the form of a sum or difference 1. $$2 \sin 3\theta \cos \theta$$. $$\sim$$ 2. $2\cos 6\theta \sin 3\theta$. $$\nu$$ 3. 2 cos 7A cos 5A. $$\checkmark$$ 4. $2 \sin 3A \sin 2A$. $$\vee$$ 5. $2\cos 5\theta \sin 4\theta$. $$u$$ 6. $2 \sin 4\theta \cos 8\theta$. $$\sim 7$$. $2 \sin 9\theta \sin 3\theta$. 8. $$2\cos 9\theta \sin 7\theta$$. 10. $$2 \sin 5a \sin 10a$$. 12. $$\sin 3a \sin a$$. $$\vee$$ 13. $\cos \frac{A}{2} \sin \frac{3A}{2}$. $$\sim 14. \sin \frac{5A}{9} \cos \frac{7A}{9}.$$ $$\checkmark$$ 15. $2\cos\frac{2\theta}{3}\cos\frac{5\theta}{3}$. 16. $\sin\frac{\theta}{4}\sin\frac{3\theta}{4}$. 16. $$\sin\frac{\theta}{4}\sin\frac{3\theta}{4}$$. $$\sqrt{17}$$. $2\cos 2\beta\cos(\alpha-\beta)$. 18. $$2 \sin 3a \sin (a+\beta)$$. 3 19. $$2\sin(2\theta+\phi)\cos(\theta-2\phi)$$. $$20. \quad 2\cos(3\theta+\phi)\sin(\theta-2\phi).$$ 21. $$\cos{(60^{\circ} + a)}\sin{(60^{\circ} - a)}$$. # Transformation of sums or differences into products. 131. Since $\sin(A+B) = \sin A \cos B + \cos A \sin B$, $\sin(A - B) = \sin A \cos B - \cos A \sin B$; and by addition, $$\sin (A+B) + \sin (A-B) = 2 \sin A \cos B \dots (1);$$ by subtraction, $$\sin (A + B) - \sin (A - B) = 2 \cos A \sin B$$(2). $\cos(A+B) = \cos A \cos B - \sin A \sin B$, and $\cos(A-B) = \cos A \cos B + \sin A \sin B$. By addition, $$\cos(A+B) + \cos(A-B) = 2\cos A\cos B$$(3); by subtraction, $$\cos (A + B) - \cos (A - B) = -2 \sin A \sin B$$ = $2 \sin A \sin (-B),....(4).$ $$A+B=C'$$, and $A-B=D$; $A=\frac{C'+D}{2}$, and $B=\frac{C-D}{2}$. we obtain $$\sin C
+ \sin D = 2 \sin \frac{C + D}{2} \cos \frac{C - D}{2},$$ $$\sin C - \sin D = 2 \cos \frac{C + D}{2} \sin \frac{C - D}{2},$$ $$\cos C + \cos D = 2 \cos \frac{C + D}{2} \cos \frac{C - D}{2},$$ $$\cos C - \cos D = 2 \sin \frac{C + D}{2} \sin \frac{D - C}{2}.$$ 132. In practice, it is more convenient to quote the formuhe we have just obtained verbally as follows: difference of two sines = 2 cos (half-sum) sin (half-difference); sum of two cosines = 2 cos (half-sum) cos (half-difference); difference of two cosines $$=2\sin(half\text{-}sum)\sin(half\text{-}difference\ reversed)$$ Example 1. $$\sin 14\theta + \sin 6\theta = 2 \sin \frac{14\theta + 6\theta}{2} \cos \frac{14\theta - 6\theta}{2}$$ = $2 \sin 10\theta \cos 4\theta$. Example 2. $$\sin 9A - \sin 7A = 2\cos \frac{9A + 7A}{2} \sin \frac{9A}{2} - \frac{7A}{2}$$ = $2\cos 8A \sin A$. Example 3. $$\cos A + \cos 8A = 2\cos\frac{9A}{2}\cos\left(-\frac{7A}{2}\right)$$ = $2\cos\frac{9A}{2}\cos\frac{7A}{2}$. Example 4. $$\cos 70^\circ - \cos 10^\circ = 2 \sin 40^\circ \sin (-30^\circ)$$ = $-2 \sin 40^\circ \sin 30^\circ = -\sin 10^\circ$. #### EXAMPLES. XII. b. Express in the form of a product 1. $$\sin 8\theta + \sin 4\theta$$. 2. $\sin 5\theta - \sin \theta$. 3. $$\cos 7\theta + \cos 3\theta$$. 4. $\cos 9\theta - \cos 11\theta$. 5. $$\sin 7a - \sin 5a$$. 6. $\cos 3a + \cos 8a$. 7. $$\sin 3a + \sin 13a$$. 8. $\cos 5a - \cos a$. 9. $$\cos 2A + \cos 9A$$. 10. $\sin 3A - \sin 11A$. 12. $\sin 70^{\circ} + \sin 50^{\circ}$. Prove that $$\checkmark 13. \quad \frac{\cos a - \cos 3a}{\sin 3a - \sin a} = \tan 2a. \quad \checkmark 14.$$ $$\frac{\sin 2a + \sin 3a}{\cos 2a - \cos 3a} = \cot \frac{a}{2}.$$ 15. $$\frac{\cos 4\theta - \cos \theta}{\sin \theta - \sin 4\theta} = \tan \frac{5\theta}{2}.$$ 16. $$\frac{\cos 2\theta - \cos 12\theta}{\sin 12\theta + \sin 2\theta} = \tan 5\theta.$$ $$\frac{\cos 2\theta - \cos 12\theta}{\sin 12\theta + \sin 2\theta} = \tan 5\theta.$$ 17. $$\sin (60^{\circ} + A) - \sin (60^{\circ} - A) = \sin A$$. 18. $$\cos (30^{\circ} - A) + \cos (30^{\circ} + A) = \sqrt{3} \cos A$$. $$20. \quad \frac{\cos(2\alpha - 3\beta) + \cos 3\beta}{\sin(2\alpha - 3\beta) + \sin 3\beta} = \cot \alpha.$$ 21. $$\frac{\cos(\theta - 3\phi) - \cos(3\theta + \phi)}{\sin(3\theta + \phi) + \sin(\theta - 3\phi)} = \tan(\theta + 2\phi).$$ 22. $$\frac{\sin(\alpha+\beta) - \sin 4\beta}{\cos(\alpha+\beta) + \cos 4\beta} = \tan \frac{\alpha - 3\beta}{2}.$$ 133. The eight formulæ proved in this chapter are of the utmost importance and very little further progress can be made until they have been thoroughly learnt. In the first group, the transformation is from products to sums and differences; in the second group, there is the converse transformation from sums and differences to products. Many examples admit of solution by applying either of these transformations, but it is absolutely necessary that the student should master all the formulæ and apply them with equal readiness. 134. The following examples should be studied with great care. Example 1. Prove that $$\sin 5A + \sin 2A - \sin A = \sin 2A (2 \cos 3A + 1).$$ The first side = $(\sin 5A - \sin A) + \sin 2A$ = $$2 \cos 3A \sin 2A + \sin 2A$$ = $\sin 2A (2 \cos 3A + 1).$ Example 2. Prove that $$\cos 2\theta \cos \theta - \sin 4\theta \sin \theta = \cos 3\theta \cos 2\theta$$. The first side $$=\frac{1}{2}(\cos 3\theta + \cos \theta) - \frac{1}{2}(\cos 3\theta - \cos 5\theta)$$ $=\frac{1}{2}(\cos \theta + \cos 5\theta)$ $=\cos 3\theta \cos 2\theta.$ Example 3. Find the value of $$\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ}$$. The expression = $\cos 20^\circ + (\cos 100^\circ + \cos 140^\circ)$ $$=\cos 20^{\circ} + 2\cos 120^{\circ}\cos 20^{\circ}$$ $$= \cos 20^{\circ} + 2\left(-\frac{1}{2}\right)\cos 20^{\circ}$$ $$= \cos 20^{\circ} - \cos 20^{\circ} = 0.$$ _ 00520 _ 00520 _ 01 Example 4. Express as the product of three sines $$\sin (\beta + \gamma - \alpha) + \sin (\gamma + \alpha - \beta) + \sin (\alpha + \beta - \gamma) - \sin (\alpha + \beta + \gamma)$$. The expression = $2 \sin \gamma \cos (\beta - \alpha) + 2 \cos (\alpha + \beta) \sin (-\gamma)$ $$= 2 \sin \gamma \left\{ \cos (\beta - \alpha) - \cos (\alpha + \beta) \right\}$$ $$=2\sin\gamma(2\sin\beta\sin\alpha)$$ $$=4\sin\alpha\sin\beta\sin\gamma$$. Example 5. Express $4\cos\alpha\cos\beta\cos\gamma$ as the sum of four cosines. The expression = $2\cos\alpha \{\cos(\beta + \gamma) + \cos(\beta - \gamma)\}$ $$=2\cos\alpha\cos(\beta+\gamma)+2\cos\alpha\cos(\beta-\gamma)$$ $$= \cos (\alpha + \beta + \gamma) + \cos (\alpha - \beta - \gamma) + \cos (\alpha + \beta - \gamma) + \cos (\alpha - \beta + \gamma)$$ $$= \cos (\alpha + \beta + \gamma) + \cos (\beta + \gamma - \alpha) + \cos (\gamma + \alpha - \beta) + \cos (\alpha + \beta - \gamma).$$ Example 6. Prove that $\sin^2 5x - \sin^2 3x = \sin 8x \sin 2x$. First solution. $$\sin^2 5x - \sin^2 3x = (\sin 5x + \sin 3x)(\sin 5x - \sin 3x)$$ $$= (2 \sin 4x \cos x)(2 \cos 4x \sin x)$$ $$= (2 \sin 4x \cos 4x)(2 \sin x \cos x)$$ $$= \sin 8x \sin 2x.$$ Second solution. $$\sin 8x \sin 2x = \frac{1}{2} (\cos 6x - \cos 10x)$$ $$= \frac{1}{2} \{1 - 2 \sin^2 3x - (1 - 2 \sin^2 5x)\}$$ $$= \sin^2 5x - \sin^2 3x.$$ Third solution. By using the formula of Art. 114 we have at once $\sin^2 5x - \sin^2 3x = \sin (5x + 3x) \sin (5x - 3x) = \sin 8x \sin 2x$. #### EXAMPLES. XII. c. Prove the following identities: 1. $$\cos 3A + \sin 2A - \sin 4A = \cos 3A (1 - 2 \sin A)$$. $$\sqrt{2}$$. $\sin 3\theta - \sin \theta - \sin 5\theta = \sin 3\theta (1 - 2\cos 2\theta)$. $$\checkmark$$ 3. $\cos\theta + \cos 2\theta + \cos 5\theta = \cos 2\theta (1 + 2\cos 3\theta)$. 4. $$\sin \alpha - \sin 2\alpha + \sin 3\alpha = 4 \sin \frac{\alpha}{2} \cos \alpha \cos \frac{3\alpha}{2}$$. 5. $$\sin 3a + \sin 7a + \sin 10a = 4 \sin 5a \cos \frac{7a}{2} \cos \frac{3a}{2}$$. 6. $$\sin A + 2 \sin 3A + \sin 5A = 4 \sin 3A \cos^2 A$$. 7. $$\frac{\sin 2a + \sin 5a - \sin a}{\cos 2a + \cos 5a + \cos a} = \tan 2a.$$ 8. $$\frac{\sin a + \sin 2a + \sin 4a + \sin 5a}{\cos a + \cos 2a + \cos 4a + \cos 5a} = \tan 3a.$$ 9. $$\frac{\cos 7\theta + \cos 3\theta - \cos 5\theta - \cos \theta}{\sin 7\theta - \sin 3\theta - \sin 5\theta + \sin \theta} = \cot 2\theta.$$ 10. $$\cos 3A \sin 2A - \cos 4A \sin A = \cos 2A \sin A$$. Prove the following identities: - 11. $\cos 5A \cos 2A \cos 4A \cos 3A = -\sin 2A \sin A$. - 12. $\sin 4\theta \cos \theta \sin 3\theta \cos 2\theta = \sin \theta \cos 2\theta$. - 13. $\cos 5^{\circ} \sin 25^{\circ} = \sin 35^{\circ}$. [Use $$\sin 25^{\circ} = \cos 65^{\circ}$$.] - 14. $\sin 65^{\circ} + \cos 65^{\circ} = \sqrt{2} \cos 20^{\circ}$. - 15. $\cos 80^{\circ} + \cos 40^{\circ} \cos 20^{\circ} = 0$. - 16. $\sin 78^{\circ} \sin 18^{\circ} + \cos 132^{\circ} = 0$. - 17. $\sin^2 5A \sin^2 2A = \sin 7A \sin 3A$. - 18. $\cos 2A \cos 5A = \cos^2 \frac{7A}{2} \sin^2 \frac{3A}{2}$. - 19. $\sin(a+\beta+\gamma) + \sin(a-\beta-\gamma) + \sin(a+\beta-\gamma) + \sin(a-\beta+\gamma) = 4 \sin a \cos \beta \cos \gamma$. - 20. $\cos(\beta+\gamma-a)-\cos(\gamma+a-\beta)+\cos(a+\beta-\gamma)$ $-\cos(a+\beta+\gamma)=4\sin a\cos\beta\sin\gamma.$ - 21. $\sin 2\alpha + \sin 2\beta + \sin 2\gamma \sin 2(\alpha + \beta + \gamma)$ = $4 \sin (\beta + \gamma) \sin (\gamma + \alpha) \sin (\alpha + \beta)$. - 22. $\cos \alpha + \cos \beta + \cos \gamma + \cos (\alpha + \beta + \gamma)$ = $4 \cos \frac{\beta + \gamma}{2} \cos \frac{\gamma + \alpha}{2} \cos \frac{\alpha + \beta}{2}$. - 23. $4 \sin A \sin (60^\circ + A) \sin (60^\circ A) = \sin 3A$. - 24. $4\cos\theta\cos\left(\frac{2\pi}{3}+\theta\right)\cos\left(\frac{2\pi}{3}-\theta\right)=\cos 3\theta$. - 25. $\cos \theta + \cos \left(\frac{2\pi}{3} \theta\right) + \cos \left(\frac{2\pi}{3} + \theta\right) = 0.$ - **26.** $\cos^2 A + \cos^2 (60^\circ + A) + \cos^2 (60^\circ A) = \frac{3}{2}$. [Put $$2\cos^2 A = 1 + \cos 2A$$.] - 27. $\sin^2 A + \sin^2 (120^\circ + A) + \sin^2 (120^\circ A) = \frac{3}{2}$. - 28. $\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$. - **29.** $\sin 20^\circ \sin 40^\circ \sin 80^\circ = \frac{1}{8} \sqrt{3}$. 9 135. Many interesting identities can be established connecting the functions of the three angles A, B, C, which satisfy the relation $A+B+C=180^{\circ}$. In proving these it will be necessary to keep clearly in view the properties of complementary and supplementary angles. [Arts. 39 and 96.] From the given relation, the sum of any two of the angles is the supplement of the third; thus $$\sin (B+C) = \sin A$$, $\cos (A+B) = -\cos C$, $\tan (C+A) = -\tan B$, $\cos B = -\cos (C+A)$, $\sin C = \sin (A+B)$, $\cot A = -\cot (B+C)$. Again, $\frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^{\circ}$, so that each half angle is the complement of the sum of the other two; thus $$\cos \frac{A+B}{2} = \sin \frac{C}{2}, \quad \sin \frac{C+A}{2} = \cos \frac{B}{2}, \quad \tan \frac{B+C}{2} = \cot \frac{A}{2},$$ $$\cos \frac{C}{2} = \sin \frac{A+B}{2}, \quad \sin \frac{A}{2} = \cos \frac{B+C}{2}, \quad \tan \frac{B}{2} = \cot \frac{C+A}{2}.$$ Example 1. If $$A+B+C=180^{\circ}$$, prove that $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$. The first side = $$2 \sin (A + B) \cos (A + B) + 2 \sin C \cos C$$ = $2 \sin C \cos (A - B) + 2 \sin C \cos C$ = $2 \sin C \{\cos (A - B) + \cos C\}$ = $2 \sin C \{\cos (A - B) - \cos (A + B)\}$ = $2 \sin C \times 2 \sin A \sin B$ = $4 \sin A \sin B \sin C$. Example 2. If $A + B + C = 180^{\circ}$, prove that $\tan A + \tan B + \tan C = \tan A \tan B \tan C$. Since A + B is the supplement of C, we have $$\tan (A+B) = -\tan C;$$ $$\therefore \frac{\tan A + \tan B}{1 - \tan A + \tan B} = -\tan C;$$ whence by multiplying up and rearranging, $\tan A + \tan B + \tan C = \tan A \tan B \tan C$. Example 3. If $A + B + C = 180^{\circ}$, prove that $$\cos A + \cos B + \cos C = 1 + 4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$ The first side = $$2\cos\frac{A+B}{2}\cos\frac{A-B}{2} +
\cos\epsilon'$$ = $2\sin\frac{C}{2}\cos\frac{A-B}{2} + 1 - 2\sin^2\frac{C}{2}$ = $1 + 2\sin\frac{C}{2}\left(\cos\frac{A-B}{2} - \sin\frac{C}{2}\right)$ = $1 + 2\sin\frac{C}{2}\left(\cos\frac{A-B}{2} - \cos\frac{A+B}{2}\right)$ = $1 + 2\sin\frac{C}{2}\left(2\sin\frac{A}{2}\sin\frac{B}{2}\right)$ = $1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}$. # EXAMPLES. XII. d. If $A + B + C = 180^\circ$, prove that - 1. $\sin 2A \sin 2B + \sin 2C = 4 \cos A \sin B \cos C$. - 2. $\sin 2A = \sin 2B \sin 2C = -4 \sin 4 \cos B \cos C$ - 3. $\sin A + \sin B + \sin C = 4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$. - 4. $\sin A + \sin B = \sin C 4 \sin \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2}$. - X 5. $\cos A \cos B + \cos C = 4\cos\frac{A}{2}\sin\frac{B}{2}\cos\frac{C}{2}$ 1. - 6. $\frac{\sin B + \sin C \sin A}{\sin A + \sin B + \sin C} = \tan \frac{B}{2} \tan \frac{C}{2}.$ - 7. $\tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} + \tan \frac{A}{2} \tan \frac{B}{2} = 1$. [Use $\tan \frac{A+B}{2} = \cot \frac{C}{2}$, and therefore $\tan \frac{A+B}{2} \tan \frac{C}{2} = 1$.] If $A + B + C = 180^{\circ}$, prove that 8. $$\frac{1+\cos A - \cos B + \cos C}{1+\cos A + \cos B - \cos C} = \tan \frac{B}{2} \cot \frac{C}{2}.$$ - 9. $\cos 2A + \cos 2B + \cos 2C + 4 \cos A \cos B \cos C + 1 = 0$. - \sim 10. cot $B \cot C + \cot C \cot A + \cot A \cot B = 1$. - 11. $(\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot B)$ = $\csc A \csc B \csc C$. - 12. $\cos^2 A + \cos^2 B + \cos^2 C + 2 \cos A \cos B \cos C = 1$. [Use $2 \cos^2 A = 1 + \cos 2A$.] 13. $$\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2} = 1 - 2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$. - 14. $\cos^2 2A + \cos^2 2B + \cos^2 2C = 1 + 2\cos 2A\cos 2B\cos 2C$. - 15. $\frac{\cot B + \cot C}{\tan B + \tan C} + \frac{\cot C + \cot A}{\tan C + \tan A} + \frac{\cot A + \cot B}{\tan A + \tan B} = 1.$ - 16. $\frac{\tan A + \tan B + \tan C}{(\sin A + \sin B + \sin C)^2} = \frac{\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}}{2 \cos A \cos B \cos C}$ *136. The following examples further illustrate the formulæ proved in this and the preceding chapter. Example 1. Prove that $$\cot (A + 15^{\circ}) - \tan (A - 15^{\circ}) = \frac{4 \cos 2A}{2 \sin 2A + 1}$$. The first side = $\frac{\cos (A + 15^{\circ})}{\sin (A + 15^{\circ})} - \frac{\sin (A - 15^{\circ})}{\cos (A - 15^{\circ})}$ = $\frac{\cos (A + 15^{\circ}) \cos (A - 15^{\circ}) - \sin (A + 15^{\circ}) \sin (A - 15^{\circ})}{\sin (A + 15^{\circ}) \cos (A - 15^{\circ})}$ = $\frac{\cos \{(A + 15^{\circ}) + (A - 15^{\circ})\}}{\sin (A + 15^{\circ}) \cos (A - 15^{\circ})}$ = $\frac{2 \cos 2A}{2 \sin (A + 15^{\circ}) \cos (A - 15^{\circ})} = \frac{2 \cos 2A}{\sin 2A + \sin 30^{\circ}}$ = $\frac{4 \cos 2A}{2 \sin 2A + 1}$. Note. In dealing with expressions which involve numerical angles it is usually advisable to effect some simplification before substituting the known values of the functions of the angles, especially if these contain surds. Example 2. If $A+B+C=\pi$, prove that $$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{\pi - A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi - C}{4}$$ The second side = $$2\cos\frac{\pi - A}{4} \left[\cos\frac{2\pi - (B + C)}{4} + \cos\frac{B - C}{4}\right]$$ = $2\cos\frac{\pi - A}{4}\cos\frac{\pi + A}{4} + 2\cos\frac{\pi - A}{4}\cos\frac{B - C}{4}$ = $\left(\cos\frac{\pi}{2} + \cos\frac{A}{2}\right) + 2\cos\frac{B + C}{4}\cos\frac{B - C}{4}$ = $\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2}$. #### *EXAMPLES. XII. e. Prove the following identities: 1. $$\cos(\alpha+\beta)\sin(\alpha-\beta)+\cos(\beta+\gamma)\sin(\beta-\gamma) + \cos(\gamma+\delta)\sin(\gamma-\delta)+\cos(\delta+\alpha)\sin(\delta-\alpha)=0.$$ 2. $$\frac{\sin(\beta - \gamma)}{\sin\beta \sin\gamma} + \frac{\sin(\gamma - a)}{\sin\gamma \sin a} + \frac{\sin(\alpha - \beta)}{\sin\alpha \sin\beta} = 0.$$ 3. $$\frac{\sin a + \sin \beta + \sin (a + \beta)}{\sin a + \sin \beta - \sin (a + \beta)} = \cot \frac{a}{2} \cot \frac{\beta}{2}.$$ 4. $$\sin a \cos (\beta + \gamma) - \sin \beta \cos (a + \gamma) = \cos \gamma \sin (a - \beta)$$. 5. $$\cos a \cos (\beta + \gamma) - \cos \beta \cos (a + \gamma) = \sin \gamma \sin (a - \beta)$$. 6. $$(\cos A - \sin A)(\cos 2A - \sin 2A) = \cos A - \sin 3A$$. 7. If $$\tan \theta = \frac{b}{a}$$, prove that $a \cos 2\theta + b \sin 2\theta = a$. [See Art. 124.] 8. Prove that $$\sin 2A + \cos 2A = \frac{(1 + \tan A)^2 - 2 \tan^2 A}{1 + \tan^2 A}$$. 9. Prove that $$\sin 4A = \frac{4 \tan A (1 - \tan^2 A)}{(1 + \tan^2 A)^2}$$. 10. If $$A + B = 45^\circ$$, prove that $(1 + \tan A)(1 + \tan B) = 2$. Prove the following identities: 11. $$\cot(15^\circ - A) + \tan(15^\circ + A) = \frac{4\cos 2A}{1 - 2\sin 2A}$$ 12. $$\cot(15^\circ + A) + \tan(15^\circ + A) = \frac{4}{\cos 2A + \sqrt{3} \sin 2A}$$ 13. $$\tan (A + 30^{\circ}) \tan (A - 30^{\circ}) = \frac{1 - 2 \cos 2A}{1 + 2 \cos 2A}$$ 14. $$(2\cos A + 1)(2\cos A - 1)(2\cos 2A - 1) = 2\cos 4A + 1$$. 15. $$\tan (\beta - \gamma) + \tan (\gamma - a) + \tan (a - \beta)$$ = $\tan (\beta - \gamma) \tan (\gamma - a) \tan (a - \beta)$. 16. $$\sin(\beta - \gamma) + \sin(\gamma - a) + \sin(a - \beta)$$ $+ 4\sin\frac{\beta - \gamma}{2}\sin\frac{\gamma - a}{2}\sin\frac{a - \beta}{2} = 0.$ 17. $$\cos^2(\beta - \gamma) + \cos^2(\gamma - a) + \cos^2(a - \beta)$$ = $1 + 2\cos(\beta - \gamma)\cos(\gamma - a)\cos(a - \beta)$. 18. $$\cos^2 a + \cos^2 \beta - 2 \cos a \cos \beta \cos (a+\beta) = \sin^2 (a+\beta)$$. 19. $$\sin^2 a + \sin^2 \beta + 2 \sin a \sin \beta \cos (a+\beta) = \sin^2 (a+\beta)$$. 20. $$\cos 12^{\circ} + \cos 60^{\circ} + \cos 84^{\circ} = \cos 24^{\circ} + \cos 48^{\circ}$$. If $A + B + C = 180^{\circ}$, shew that 21. $$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{B+C}{4} \cos \frac{C+A}{4} \cos \frac{A+B}{4}$$. 22. $$\cos \frac{A}{2} = \cos \frac{B}{2} + \cos \frac{C}{2} = 4 \cos \frac{\pi + A}{4} \cos \frac{\pi - B}{4} \cos \frac{\pi + C}{4}$$. 23. $$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} = 1 + 4 \sin \frac{\pi - A}{4} \sin \frac{\pi - B}{4} \sin \frac{\pi - C}{4}$$. If $a+\beta+\gamma=\frac{\pi}{2}$, shew that 24. $$\frac{\sin 2a + \sin 2\beta + \sin 2\gamma}{\sin 2a + \sin 2\beta - \sin 2\gamma} = \cot a \cot \beta.$$ 25. $$\tan \beta \tan \gamma + \tan \gamma \tan \alpha + \tan \alpha \tan \beta = 1$$. ### EXAMPLES. XII. f. (Easy Miscellaneous Examples on Chapters XI and XII.) Prove the following identities: 1. $$\csc(a+\beta) = \frac{\csc a \csc \beta}{\cot a + \cot \beta}$$. $$\checkmark 2. \quad \csc(a-\beta) = \frac{1+\tan a \tan \beta}{\sec a \sec \beta}.$$ - 3. $\csc 2\theta \cot 2\theta = \tan \theta$. - 4. $2\cos^2(45^\circ A) = 1 + \sin 2A$. - 5. $2\cos 2x \csc 3x = \csc x \csc 3x$. 6. $$\cos(A+B)\cos(A-B)+1=\cos^2 A+\cos^2 B$$. 7. $$1 + \cos 4A = 2 \cos 2A (1 - 2 \sin^2 A)$$. 8. Express cot 2.4 in terms of tan A, and tan 2.4 in terms of cot A. 9. If $$\tan \frac{A}{2} = t$$, prove that (i) $$\sin A + \tan A = \frac{4\ell}{1-\ell^4}$$; (ii) $\sec A + \tan A = \frac{(1+\ell)^2}{1-\ell^2}$. 10. Express $$\frac{\sin 3A}{\sin 2A - \sin A}$$ in terms of cos A. 11. If $\sin a = 28$ and $\cos \beta = 6$, find the value of $\cos (a + \beta)$. Thence from the table of cosines find $a + \beta$ to the nearest minute. Check the result by finding a and β separately from the data. 12. If $$a = \beta + \gamma$$, shew that $\sin(a + \beta + \gamma) + \sin(a + \beta - \gamma) + \sin(a - \beta + \gamma)$ = $4 \sin a \cos \beta \cos \gamma$. 13. Prove that $\cos 57^{\circ} + \sin 27^{\circ} = \cos 3^{\circ}$, and verify the relation by means of the Tables. 14. Express 4 sin 5a cos 3a cos 2a as the sum of three sines. 15. By means of the Tables find approximately the numerical value of the expression $4\cos 20^{\circ}\cos 30^{\circ}\cos 40^{\circ}$. [First express the product as the sum of three cosines.] 16. Find the smallest value of θ which satisfies the equation $$\sin 4\theta \cos \theta = \frac{1}{4} + \sin \frac{5\theta}{2} \cos \frac{5\theta}{2}.$$ - 17. Prove the identities: - (i) $(x \tan a + y \cot a)(x \cot a + y \tan a) = (x + y)^2 + 4xy \cot^2 2a$; - (ii) $\cos \beta \cos (2a-\beta) = \cos^2 a \sin^2 (a-\beta)$; - (iii) $\cos a + \cos 3a + \cos 5a + \cos 7a = \frac{1}{2} \sin 8a \csc a$. - 18. If $\cos \theta = 8$, find the numerical values of $\sin 2\theta$ and $\cos 2\theta$. Check the results by first finding θ from the table of cosines. - 19. If $2A + B = 90^{\circ}$, prove that $\cos A = \sqrt{\frac{1 + \sin B}{2}}$. - 20. Prove that - (i) $\frac{1}{\sin 10^{\circ}} \frac{\sqrt{3}}{\cos 10^{\circ}} = 4$; (ii) $\sin 54^{\circ} = \sin 162^{\circ} + \sin 30^{\circ}$. - 21. If $B + C = 180^{\circ}$, prove that $2(1 \sin B \sin C) = \cos^2 B + \cos^2 C$. - 22. If $A + B + C = 180^{\circ}$, prove that $1 2 \sin B \sin C \cos A + \cos^2 A = \cos^2 B + \cos^2 C$. - 23. If A + B + C = 0, prove that $1 + 2 \sin B \sin C \cos A + \cos^2 A = \cos^2 B + \cos^2 C$. - 24. Prove that $\sin^2 A \cos^2 A \cos 2B = \sin^2 B \cos^2 B \cos 2A$. - 25. Prove that $\tan 50^{\circ} \tan 40^{\circ} = 2 \tan 10^{\circ}$. Verify the relation by using the table of tangents. - **26.** If $\cot \theta = 5$ find $\sin 2\theta$ and $\cos 2\theta$. Check the values as in Ex. 18. - 27. By means of the Tables, find the two smallest values of θ which satisfy the equation $$362 \cos \theta + \sin \theta = 1$$. [From the table of tangents find a such that $\tan a = 362$; then the equation may be written $\sin (a+\theta) = \cos a = \sin (90^{\circ} - a)$.] # CHAPTER XIII. # RELATIONS BETWEEN THE SIDES AND ANGLES OF A TRIANGLE, 137. In any triangle the sides are proportional to the sines of the opposite angles; that is, $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$ (1) Let the triangle ABC be acute-angled. From A draw AD perpendicular to the opposite
side; then $$AD = AB \sin ABD = c \sin B$$, and $$AD = AC \sin ACD = b \sin C$$; $$\therefore b \sin C = c \sin B$$, that is, $$\frac{b}{\sin B} = \frac{c}{\sin C}$$. (2) Let the triangle ABC have an obtuse angle B. Draw AD perpendicular to CB produced; then $$AD = AC \sin ACD = b \sin C$$, and $$AD = AB\sin ABD$$ $$=c\sin(180^{\circ}-B)=c\sin B;$$ $$\therefore b \sin C = c \sin B$$; that is, $$\frac{b}{\sin B} = \frac{c}{\sin C}.$$ In like manner it may be proved that either of these ratios is equal to $\frac{a}{\sin A}$. Thus $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}.$$ 138. To find an expression for one side (c) of a triangle in terms of the other two sides and the included angle (C). (1) Let C be an acute angle. Draw BD perpendicular to AC; then by Euc. II. 13, $$AB^{2} = BC^{2} + CA^{2} - 2AC$$, CD ; $\therefore c^{2} = a^{2} + b^{2} - 2b$, $a \cos C$ $= a^{2} + b^{2} - 2ab \cos C$. Draw BD perpendicular to AC produced; then by Euc. II. 12, $$AB^{2} = BC^{2} + CA^{2} + 2AC \cdot C'D;$$ $$\therefore c^{2} = a^{2} + b^{2} + 2b \cdot a \cos BCD$$ $$= a^{2} + b^{2} + 2ab \cos (180^{\circ} - C')$$ $$= a^{2} + b^{2} - 2ab \cos C'.$$ Hence in each case, $c^2 = a^2 + b^2 + 2ab \cos C$. Similarly it may be shewn that $$a^2 = b^2 + c^2 = 2bc \cos A,$$ $b^2 = c^2 + a^2 = 2ca \cos B.$ and 139. From the formulæ of the last article, we obtain $$\cos A = \frac{b^2 + c^2 - a^2}{2bc}; \quad \cos B = \frac{c^2 + a^2 - b^2}{2ca}; \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab}.$$ These results enable us to find the cosines of the angles when the numerical values of the sides are given. 140. To express one side of a triangle in terms of the adjacent angles and the other two sides, (1) Let ABC be an acute-angled triangle. Draw $$AD$$ perpendicular to BC ; then $BC = BD + CD$ = $AB \cos ABD + AC \cos ACD$; that is, $a = c \cos B + b \cos C$. XIII. (2) Let the triangle ABC have an obtuse angle C. Draw AD perpendicular to $B\ell'$ produced; then $$BC = BD - CD$$ $$= AB \cos ABD - AC \cos ACD;$$ $$\therefore a = c \cos B - b \cos (180^{\circ} - C)$$ $$= c \cos B + b \cos C.$$ Thus in each case $a = b \cos C + c \cos B$. Similarly it may be shewn that $$b=c\cos A + a\cos C$$, and $c=a\cos B + b\cos A$. Note. The formulæ we have proved in this chapter are quite general and may be regarded as the fundamental relations subsisting between the sides and angles of a triangle. The modified forms which they assume in the case of right-angled triangles have already been considered in Chap. V.; it will therefore be unnecessary in the present chapter to make any direct reference to right-angled triangles. *141. The sets of formulæ in Arts. 137, 138, and 140 have been established independently of one another; they are however not independent, for from any one set the other two may be derived by the help of the relation $A + B + C = 180^\circ$. For instance, suppose we have proved as in Art. 137 that $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C};$$ then since $\sin A = \sin (B + C) = \sin B \cos C + \sin C \cos B$; $$\therefore 1 = \frac{\sin B}{\sin A} \cos C + \frac{\sin C}{\sin A} \cos B;$$ $$\therefore 1 = \frac{b}{a} \cos C + \frac{c}{a} \cos B;$$ $$\therefore a = b \cos C + c \cos B.$$ Similarly, we may prove that $$b=c\cos A+a\cos C$$, and $c=a\cos B+b\cos A$. Multiplying these last three equations by a, b, -c respectively and adding, we have $$a^2 + b^2 - c^2 = 2ab \cos C';$$ $$\therefore c^2 = a^2 + b^2 - 2ab \cos C'.$$ Similarly the other relations of Art. 138 may be deduced, # Solution of Triangles. 142. When any three parts of a triangle are given, provided that one at least of these is a side, the relations we have proved enable us to find the numerical values of the unknown parts. For from any equation which connects four quantities three of which are known the fourth may be found. Thus if c, a, B are given, we can find b from the formula $$b^2 = c^2 + a^2 - 2ca \cos B$$; and if B, C, b are given, we find c from the formula $$\frac{c}{\sin C} = \frac{b}{\sin B}.$$ We may remark that if the three angles alone are given, the formula $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$ enables us to find the ratios of the sides but not their actual lengths, and thus the triangle cannot be completely solved. In such a case there may be an infinite number of equiangular triangles all satisfying the data of the question. 143. Case I. To solve a triangle having given the three sides. The angles A and B may be found from the formulae $$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$, and $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$; then the angle C is known from the equation $C=180^{\circ}-A-B$. Example 1. If a=7, b=5, c=8, find the angles A and B, having given that $\cos 38^{\circ} 11' = \frac{11}{14}$. $$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{5^2 + 8^2 - 7^2}{2 \times 5 \times 8} = \frac{40}{2 \times 5 \times 8} = \frac{1}{2};$$ $$A = 60^{\circ}$$ $$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{8^2 + 7^2 - 5^2}{2 \times 8 \times 7} = \frac{88}{2 \times 8 \times 7} = \frac{11}{14};$$ $$\therefore B = 38^{\circ} 11'.$$ Example 2. Find from the Tables the greatest angle of the triangle whose sides are 6, 13, 11. Let a=6, b=13, c=11. Since the greatest angle is opposite to the greatest side the required angle is B. And $$\cos B = \frac{c^9 + a^2 - b^2}{2ca} = \frac{11^2 + 6^2}{2 \times 11 \times 6} = \frac{13^2}{2 \times 11 \times 6} = -\frac{12}{2 \times 11 \times 6} = -\frac{0909}{11 \times 6}$$ $$= -\cos 84^{\circ} 47', \text{ from the Tables;}$$ $$\therefore B = 180^{\circ} - 84^{\circ} 47' = 95^{\circ} 13'.$$ Thus the required angle is 95° 13'. 144. Case II. To solve a triangle having given two sides and the included angle. Let b, c, A be given; then a can be found from the formula $$a^2 = b^2 + c^2 - 2bc \cos A$$. We may now obtain B from either of the formulæ $$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$, or $\sin B = \frac{b \sin A}{a}$; then C is known from the equation $C = 180^{\circ} - A - B$. Example. If a=3, b=7, $C=98^{\circ}13'$, solve the triangle, with the aid of the Tables. $$c^{2}=a^{2}+b^{2}-2ab\cos C$$ $$=9+49-2\times3\times7\cos 98^{\circ}13'.$$ Now $\cos 98^{\circ}13'=-\sin 8^{\circ}13'$ [Art. 98] $$=-1429, \text{ from the Tables,}$$ $$\therefore c^{2}=58+6\cdot006=64, \text{ approximately;}$$ $$\therefore c=8.$$ $$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{64 + 9 - 49}{2 \times 8 \times 3} = \frac{24}{2 \times 8 \times 3} = \frac{1}{2};$$ $$\therefore B = 60^{\circ}.$$ $$\therefore B = 180^{\circ} - 60^{\circ} - 98^{\circ} 13' = 21^{\circ} 47'.$$ 145. Case III. To solve a triangle having given two angles and a side. Let B, C, a be given. The angle A is found from $A = 180^{\circ} - B = \xi'$; and the sides b and c from $$b = \frac{a \sin B}{\sin A}$$ and $c = \frac{a \sin C}{\sin A}$. Example. If $A = 105^{\circ}$, $C = 60^{\circ}$, b = 4, solve the triangle. $$B = 180^{\circ} - 105^{\circ} - 60^{\circ} = 15^{\circ}.$$ $$\therefore c = \frac{b \sin C}{\sin B} = \frac{4 \sin 60^{\circ}}{\sin 15^{\circ}} = \frac{4 \sqrt{3}}{2} \cdot \frac{2 \sqrt{2}}{\sqrt{3} - 1} = \frac{4 \sqrt{6}}{\sqrt{3} - 1}$$ $$= \frac{4 \sqrt{6} (\sqrt{3} + 1)}{3 - 1} = 2 \sqrt{6} (\sqrt{3} + 1);$$ $$\therefore c = 6 \sqrt{2} + 2 \sqrt{6}.$$ $$a = \frac{b \sin A}{\sin B} = \frac{4 \sin 105^{\circ}}{\sin 15^{\circ}} - \frac{4 \sin 75}{\sin 15^{\circ}}$$ $$= \frac{4 \sqrt{3} + 1}{2 \sqrt{2}} \cdot \frac{2 \sqrt{2}}{\sqrt{3} - 1} - \frac{4 (\sqrt{3} + 1)}{\sqrt{3} - 1};$$ $$\therefore a = 4 (2 + \sqrt{3}).$$ ### EXAMPLES. XIII. a. (Tables must be used for Examples marked with an asterisk.) 1. If $$a = 15$$, $b = 7$, $c = 13$, find C . 2. If $$a=7$$, $b=3$, $c=5$, find A . //9.0 5 9 3. If $$a=5$$, $b=5\sqrt{3}$, $c=5$, find the angles. $b=5$ - 4. If a = 25, b = 31, $c = 7\sqrt{2}$, find A. - 5. The sides of a triangle are 2, 2\frac{2}{3}, 3\frac{1}{3}, find the greatest angle. - **6.** Solve the triangle when $a = \sqrt{3+1}$, b=2, $c=\sqrt{6}$. - 7. Solve the triangle when $a = \sqrt{2}$, b = 2, $c = \sqrt{3} 1$. - *8. If a=8, b=5, $c=\sqrt{19}$, find C. - *9. If the sides are as 4:7:5, find the greatest angle. if - 10. If a=2, $b=\sqrt{3}+1$, C=60, find c. - 11. Given a=3, c=5, $B=120^{\circ}$, find b. - *12. Given b=7, c=6, $A=75^{\circ} 31'$, find a. - *13. If b=8, c=11, $A=93^{\circ}35'$, find a. - *14. If a = 7, c = 3, $B = 123^{\circ} 12'$, find b. - 15. Solve the triangle when $a = 2\sqrt{6}$, $c = 6 2\sqrt{3}$, B = 75. - 16. Solve the triangle when $A = 72^{\circ}$, b = 2, $c = \sqrt{5} + 1$. - 17. Given $A = 75^{\circ}$, $B = 30^{\circ}$, $b = \sqrt{8}$, solve the triangle. - **18.** If $B = 60^{\circ}$, $C = 15^{\circ}$, $b = \sqrt{6}$, solve the triangle. - **19.** If $A = 45^{\circ}$, $B = 105^{\circ}$, $c = \sqrt{2}$, solve the triangle. - **20.** Given $A = 45^{\circ}$, $B = 60^{\circ}$, shew that $c : a = \sqrt{3} + 1 : 2$. - **21.** If $C = 120^{\circ}$, $c = 2\sqrt{3}$, a = 2, find b. - **22.** If $B = 60^{\circ}$, a = 3, b = 3, find c. - **23.** Given (a+b+c)(b+c-a) = 3bc, find .1. - 24. Find the angles of the triangle whose sides are $3+\sqrt{3}$, $2\sqrt{3}$, $\sqrt{6}$. - 25. Find the angles of the triangle whose sides are $$\frac{\sqrt{3+1}}{2\sqrt{2}}$$, $\frac{\sqrt{3-1}}{2\sqrt{2}}$, $\frac{\sqrt{3}}{2}$. - **26.** Two sides of a triangle are $\frac{1}{\sqrt{6}-\sqrt{2}}$ and $\frac{1}{\sqrt{6}+\sqrt{2}}$, and the included angle is 60°; solve the triangle. - 146. When an angle of a triangle is obtained through the medium of the sine there may be ambiguity, for the sines of supplementary angles are equal in magnitude and are of the same sign, so that there are two angles less than 180° which have the same sine. When an angle is obtained through the medium of the cosine there is no ambiguity, for there is only one angle less than 180° whose cosine is equal to a given quantity. Thus if $\sin A = \frac{1}{2}$, then $A =
30^{\circ}$ or 150; $\cos A = \frac{1}{2}$, then $A = 60^{\circ}$. Example. If $C = 60^{\circ}$, $b = 2\sqrt{3}$, $c = 3\sqrt{2}$, find A. From the equation $\sin B = \frac{b \sin C}{c}$, we have $$\sin B = \frac{2\sqrt{3}}{3\sqrt{2}} \cdot \frac{\sqrt{3}}{2} = \frac{1}{\sqrt{2}};$$:. $B = 45^{\circ} \text{ or } 135^{\circ}$. The value $B\!=\!135^\circ$ is inadmissible, for in this case the sum of B and C would be greater than 180° . Thus $A = 180^{\circ} - 60^{\circ} - 45^{\circ} = 75^{\circ}$. 147. Case IV. To solve a triangle having given two sides and an angle opposite to one of them. Let a, b, A be given; then B is to be found from the equation $$\sin B = \frac{b}{a} \sin A$$. - (i) If $a < b \sin A$, then $\frac{b \sin A}{a} > 1$, so that $\sin B > 1$, which is impossible. Thus there is no solution. - (ii) If $a=b\sin A$, then $\frac{b\sin A}{a}=1$, so that $\sin B=1$, and B has only the value 90°. - (iii) If $a > b \sin A$, then $\frac{b \sin A}{a} < 1$, and two values for B may be found from $\sin B = \frac{b \sin A}{a}$. These values are supplementary, so that one angle is acute, the other obtuse. - (1) If a < b, then A < B, and therefore B may either be acute or obtuse, so that both values are admissible. This is known as the ambiguous case. - (2) If a=b, then A=B; and if a>b, then A>B; in either case B cannot be obtuse, and therefore only the smaller value of B is admissible. When B is found, C is determined from $C=180^{\circ}-A-B$. Finally, c may be found from the equation $c=\frac{a\sin C}{\sin A}$. From the foregoing investigation it appears that the only case in which an ambiguous solution can arise is when the smaller of the two given sides is opposite to the given angle. 148. To discuss the Ambiguous Case geometrically. Let a, b, A be the given parts. Take a line AX unlimited towards X; make $\angle XAC$ equal to A, and AC equal to b. Draw CD perpendicular to AX, then $CD = b \sin A$. With centre C and radius equal to a describe a circle. (i) If $a < b \sin A$, the circle will not meet AX; thus no triangle can be constructed with the given parts. (ii) If $a = b \sin A$, the circle will touch AX at D; thus there is a right-angled triangle with the given parts. (iii) If $a > b \sin A$, the circle will cut AX in two points B_1 , B_2 . (1) These points will be both on the same side of A, when a < b, in which case there are two solutions, namely the triangles $$AB_1C$$, AB_2C . This is the Ambiguous Case. (2) The points B_1 , B_2 will be on opposite sides of A when a > b. In this case there is only one solution, for the angle CAB_2 is the supplement of the given angle, and thus the triangle AB_2C does not satisfy the data. (3) If a = b, the point B_2 coincides with A, so that there is only one solution. Example. Given $B=45^{\circ}$, $c=\sqrt{12}$, $b=\sqrt{8}$, solve the triangle. We have $$\sin C = \frac{c \sin B}{b} = \frac{2\sqrt{3}}{2\sqrt{2}} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{3}}{2}$$. $\therefore C = 60^{\circ} \text{ or } 120^{\circ},$ and since b < c, both these values are admissible. The two triangles which satisfy the data are shewn in the figure. Denote the sides BC_1 , BC_2 by a_1 , a_2 , and the angles BAC_1 , BAC_2 by A_1 , A_2 respectively. (i) In the $$\triangle ABC_1$$, $\angle A_1 = 75^\circ$; hence $$a_1 = \frac{b \sin A_1}{\sin B} = \frac{2\sqrt{2}}{\frac{1}{\sqrt{2}}} \cdot \frac{\sqrt{3+1}}{2\sqrt{2}} = \sqrt{2}(\sqrt{3+1}).$$ (ii) In the $\triangle ABC_2$, $\angle A_2 = 15^\circ$; hence $$a_2 = \frac{b \sin A_2}{\sin B} = \frac{2\sqrt{2}}{\frac{1}{\sqrt{2}}} \cdot \frac{\sqrt{3} - 1}{2\sqrt{2}} = \sqrt{2}(\sqrt{3} - 1).$$ Thus the complete $$\begin{cases} C=60^{\circ}, \text{ or } 120^{\circ}; \\ A=75^{\circ}, \text{ or } 15^{\circ}; \\ a=\sqrt{6+\sqrt{2}}, \text{ or } \sqrt{6-\sqrt{2}}. \end{cases}$$ # EXAMPLES. XIII. b. - 1. Given a=1, $b=\sqrt{3}$, $A=30^{\circ}$, solve the triangle. - 2. Given $b=3\sqrt{2}$, $c=2\sqrt{3}$, $C=45^{\circ}$, solve the triangle. - 3. If $C=60^\circ$, a=2, $c=\sqrt{6}$, solve the triangle. - **4.** If $A = 30^{\circ}$, a = 2, c = 5, solve the triangle. - 5. If $B=30^\circ$, $b=\sqrt{6}$, $c=2\sqrt{3}$, solve the triangle. - **6.** If $B = 60^{\circ}$, $b = 3\sqrt{2}$, $c = 3 + \sqrt{3}$, solve the triangle. - 7. If $a = 3 + \sqrt{3}$, $c = 3 \sqrt{3}$, $C = 15^{\circ}$, solve the triangle. - 8. If $A = 18^{\circ}$, a = 4, $b = 4 + \sqrt{80}$, solve the triangle. - 9. If $B=135^{\circ}$, $\alpha=3\sqrt{2}$, $b=2\sqrt{3}$, solve the triangle. 149. Many relations connecting the sides and angles of a triangle may be proved by means of the formulae we have established. Example 1. Prove that $(b-c)\cos\frac{A}{2} = a\sin\frac{B-C}{2}$. $$k = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C};$$ then $$a=k\sin A$$, $b=k\sin B$, $c=k\sin C$; $$\therefore (b-c)\cos\frac{A}{2} = k (\sin B - \sin C)\cos\frac{A}{2}$$ $$= 2k \cos\frac{B+C}{2}\sin\frac{B-C}{2}\cos\frac{A}{2}$$ $$= 2k \sin\frac{A}{2}\cos\frac{A}{2}\sin\frac{B-C}{2}$$ $$= k \sin A \sin\frac{B-C}{2}$$ $$= a \sin\frac{B-C}{2}.$$ Example 2. If $a\cos^2\frac{C}{2} + c\cos^2\frac{A}{2} = \frac{3b}{2}$, shew that the sides of the triangle are in A.P. Since $$2a\cos^2\frac{C}{2} + 2c\cos^2\frac{A}{2} = 3b,$$ $$\therefore a(1+\cos C) + c(1+\cos A) = 3b,$$ $$\therefore a+c+(a\cos C+c\cos A) = 3b,$$ $$\therefore a+c+b=3b,$$ $$\therefore a+c=2b.$$ Thus the sides a, b, c are in A.P. Example 3. Prove that $$(b^2-c^2)\cot A + (c^2-a^2)\cot B + (a^2-b^2)\cot C = 0.$$ Let $$k = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$; then the first side $$= k^{2} \left\{ (\sin^{2} B - \sin^{2} C) \frac{\cos A}{\sin A} + \dots + \dots \right\}$$ $$= k^{2} \left\{ \sin (B + C) \sin (B - C) \frac{\cos A}{\sin A} + \dots + \dots \right\}. [Art. 114].$$ But $\sin (B + C) = \sin A$, and $\cos A = -\cos (B + C)$; : the first side $$-k^{2} \left\{ \sin \left(B - C \right) \cos \left(B + C \right) + \dots + \dots \right\}$$ $$= -\frac{k^{2}}{2} \left\{ \left(\sin 2B - \sin 2C \right) + \left(\sin 2C - \sin 2A \right) + \left(\sin 2A - \sin 2B \right) \right\}$$ $$= 0.$$ #### EXAMPLES. XIII. c. Prove the following identities: 1. $$a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0$$. 2. $$2(bc\cos A + ca\cos B + ab\cos C) = a^2 + b^2 + c^2$$. 3. $$a(b\cos C - c\cos B) = b^2 - r^2$$ 4. $$(b+c)\cos A + (c+a)\cos B + (a+b)\cos C = a+b+c$$ 5. $$2\left(a\sin^2\frac{\ell'}{2} + c\sin^2\frac{A}{2}\right) = c + a - b$$. 6. $$\frac{\cos B}{\cos C} = \frac{c - b \cos A}{b - c \cos A}.$$ 7. $$\tan A = \frac{a \sin C}{b - a \cos C}.$$ 8. $$(b+c)\sin\frac{A}{2} = a\cos\frac{B-C}{2}$$. 9. $$\frac{a+b}{c}\sin^2\frac{C}{2} = \frac{\cos A + \cos B}{2}.$$ 10. $$a \sin (B - C) + b \sin (C - A) + c \sin (A - B) = 0$$. 11. $$\frac{\sin{(A-B)}}{\sin{(A+B)}} = \frac{a^2 - b^2}{c^2}$$. 12. $\frac{c\sin{(A-B)}}{b\sin{(C-A)}} = \frac{a^2 - b^2}{c^2 - a^2}$. [All articles and examples marked with an asterisk may be omitted on the first reading of the subject.] *150. The ambiguous case may also be discussed by first finding the third side. As before, let a, b, A be given, then $$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc};$$ $$\therefore c^{2} - 2b\cos A \cdot c + b^{2} - a^{2} = 0.$$ By solving this quadratic equation in c, we obtain $$c = b \cos A \pm \sqrt{b^2 \cos^2 A + a^2 - b^2}$$ = $b \cos A \pm \sqrt{a^2 - b^2 \sin^2 A}$. - (i) When $a < b \sin A$, the quantity under the radical is negative, and the values of c are impossible; so that there is no solution. - (ii) When $a=b \sin A$, the quantity under the radical is zero, and $c=b \cos A$. Since $\sin A < 1$, it follows that a < b, and therefore A < B. Hence the triangle is impossible unless the given angle A is acute, in which case c is positive and there is one solution. - (iii) When $a > b \sin A$, there are three cases to consider. - (1) Suppose a < b, then A < B, and as before the triangle is impossible unless A is acute. In this case $b \cos A$ is positive. Also $$\sqrt{a^2 - b^2 \sin^2 A}$$ is real and $< \sqrt{b^2 - b^2 \sin^2 A}$; that is $\sqrt{a^2 - b^2 \sin^2 A} < b \cos A$; hence both values of c are real and positive, so that there are two solutions. (2) Suppose a > b, then $\sqrt{a^2 - b^2 \sin^2 A} > \sqrt{b^2 - b^2 \sin^2 A}$; that is $\sqrt{a^2 - b^2 \sin^2 A} > b \cos A$; hence one value of c is positive and one value is negative, whether A is acute or obtuse, and in each case there is only one solution. (3) Suppose a=b, then $\sqrt{a^2-b^2\sin^2 A}=b\cos A$; $\therefore c=2b\cos A \text{ or } 0$; hence there is only one solution when A is acute, and when A is obtuse the triangle is impossible. CHAP. Example. If b, c, B are given, and if b < c, shew that $$(a_1 - a_2)^2 + (a_1 + a_2)^2 \tan^2 B = 4b^2$$, where a_1 , a_2 are the two values of the third side. From the formula $$\cos B = \frac{c^2 + a^2 - b^2}{2ca},$$ we have $$a^2 - 2c \cos B \cdot a + c^2 - b^2 = 0.$$ But the roots of this equation are a_1 and a_2 ; hence by the theory of quadratic equations $$\begin{aligned} a_1 + a_2 &= 2c \cos B \text{ and } a_1 a_2 = c^2 - b^2. \\ \therefore & (a_1 - a_2)^2 = (a_1 + a_2)^2 - 4a_1 a_2 \\ &= 4c^2 \cos^2 B - 4 \ (c^2 - b^2). \end{aligned}$$ $$\therefore (a_1 - a_2)^2 + (a_1 + a_2)^2 \tan^2 B = 4c^2 \cos^2 B - 4(c^2 - b^2) + 4c^2 \cos^2 B \tan^2 B$$ $$= 4c^2 (\cos^2 B + \sin^2 B) - 4c^2 + 4b^2$$ $$= 4c^2 - 4c^2 + 4b^2$$ $$= 4b^2.$$ #### *EXAMPLES. XIII. d. - 1. In a triangle in which each base angle is double of the third angle the base is 2: solve the triangle. - 2. If $B=45^{\circ}$, $C=75^{\circ}$, and the perpendicular from A on BC is 3, solve the triangle. - 3. If a=2, $b=4-2\sqrt{3}$, $c=3\sqrt{2}-\sqrt{6}$, solve the triangle. - **4.** If $A = 18^{\circ}$, b a = 2, ab = 4, find the other angles. - 5. Given $B=30^{\circ}$, c=150, $b=50\sqrt{3}$, shew that of the two triangles which satisfy the data
one will be isosceles and the other right-angled. Find the third side in the greater of these triangles. Would the solution be ambiguous if the data had been $B=30^{\circ}$, c=150, b=75? - 6. If $A=36^{\circ}$, $\alpha=4$, and the perpendicular from C upon AB is $\sqrt{5}-1$, find the other angles. - 7. If the angles adjacent to the base of a triangle are $22\frac{1}{2}^{\circ}$ and $112\frac{1}{2}^{\circ}$, shew that the altitude is half the base. - 8. If a=2b and A=3B, find the angles and express c in terms of a. 9. The sides of a triangle are 2x+3, x^2+3x+3 , x^2+2x ; shew that the greatest angle is 120° . Shew that in any triangle 10. $$(b-a)\cos C + c(\cos B - \cos A) = c\sin \frac{A-B}{2}\csc \frac{A+B}{2}$$. 11. $$a \sin\left(\frac{A}{2} + B\right) = (b+c)\sin\frac{A}{2}$$. 12. $$\sin\left(B + \frac{C}{2}\right)\cos\frac{C}{2} = \frac{a+b}{b+c}\cos\frac{A}{2}\cos\frac{B-C}{2}$$. 13. $$\frac{1+\cos{(A-B)}\cos{C}}{1+\cos{(A-C)}\cos{B}} = \frac{a^2+b^2}{a^2+c^2}.$$ 14. If $c^4 - 2(a^2 + b^2)c^2 + a^4 + a^2b^2 + b^4 = 0$, prove that C is 60° or 120°. 15. If a, b, A are given, and if c_1, c_2 are the values of the third side in the ambiguous case, prove that if $c_1 > c_2$, (1) $$c_1 - c_2 = 2a \cos B_1$$. (2) $$\cos \frac{C_1 - C_2}{2} = \frac{b \sin A}{a}$$. (3) $$c_1^2 + c_2^2 - 2c_1c_2\cos 2A = 4a^2\cos^2 A$$. (4) $$\sin \frac{C_1 + C_2}{2} \sin \frac{C_1 - C_2}{2} = \cos A \cos B_1$$. 16. If $A = 45^{\circ}$, and c_1 , c_2 be the two values of the ambiguous side, shew that $$\cos B_1 C B_2 \!=\! \frac{2c_1c_2}{{c_1}^2\!+\!{c_2}^2}.$$ 17. If $\cos A + 2 \cos C : \cos A + 2 \cos B = \sin B : \sin C$, prove that the triangle is either isosceles or right-angled. 18. If a, b, c are in A.P., shew that $$\cot \frac{A}{2}$$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ are also in A.P. 19. Shew that $$\frac{a^2 \sin{(B-C)}}{\sin{B} + \sin{C}} + \frac{b^2 \sin{(C-A)}}{\sin{C} + \sin{A}} + \frac{c^2 \sin{(A-B)}}{\sin{A} + \sin{B}} = 0.$$ # MISCELLANEOUS EXAMPLES. D. - 1. Prove that (1) $\tan 2\theta \cot \theta 1 = \sec 2\theta$; (2) $\sin a - \cot \theta \cos a = -\csc \theta \cos (a + \theta)$. - 2. If a = 48, b = 35, $C = 60^{\circ}$, find c. - 3. If $\cos a = \frac{8}{17}$ and $\cos \beta = \frac{15}{17}$, find $\tan (a+\beta)$ and $\csc (a+\beta)$. - 4. If $a = \frac{\pi}{21}$, find the value of $\frac{\sin 23a \sin 7a}{\sin 2a + \sin 14a}$. - 5. Prove that $\sin \theta (\cos 2\theta + \cos 4\theta + \cos 6\theta) = \sin 3\theta \cos 4\theta$. - 6. If $b = \sqrt{2}$, $c = \sqrt{3} + 1$, $A = 45^{\circ}$, solve the triangle. - 7. Prove that - (1) $2\sin^2 36^\circ = \sqrt{5}\sin 18^\circ$; (2) $4\sin 36^\circ \cos 18^\circ = \sqrt{5}$. - 8. Prove that $\frac{\sin 3a}{\sin a} + \frac{\cos 3a}{\cos a} = 4 \cos 2a$. - 9. If b=c=2, $a=\sqrt{6}-\sqrt{2}$, solve the triangle. - 10. Shew that - (1) $\cos 2a \cot 3a \sin 2a = \tan a (\sin 2a + \cot 3a \cos 2a)$. - (2) $\cos a + \cos 2a + \cos 3a = 4 \cos a \cos \frac{a}{2} \cos \frac{3a}{2} 1$. - 11. In any triangle, prove that - (1) $b^2 \sin 2C + c^2 \sin 2B = 2bc \sin A$; (2) $$\frac{a^2 \sin{(B-C)}}{\sin{A}} + \frac{b^2 \sin{(C-A)}}{\sin{B}} + \frac{c^2 \sin{(A-B)}}{\sin{C}} = 0.$$ 12. If A, B, C, D are the angles of a quadrilateral, prove that $$\frac{\tan A + \tan B + \tan C + \tan D}{\cot A + \cot B + \cot C + \cot D} = \tan A \tan B \tan C \tan D.$$ $$[Use \tan (A+B) = \tan (360^{\circ} - C - D).]$$ ### CHAPTER XIV. #### LOGARITHMS. **151.** DEFINITION. The **logarithm** of any number to a given **base** is the index of the power to which the base must be raised in order to equal the given number. Thus if $a^x = N$, x is called the logarithm of N to the base a. Example 1. Since $3^4 = 81$, the logarithm of 81 to base 3 is 4. Example 2. Since $10^1=10$, $10^2=100$, $10^3=1000$,..... the natural numbers 1, 2, 3,... are respectively the logarithms of 10, 100, 1000,..... to base 10. Example 3. Find the logarithm of 008 to base 25. Let x be the required logarithm; then by definition, $$25^x = .008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3};$$ $(5^2)^x = 5^{-3}, \text{ or } 5^{2x} = 5^{-3};$ that is, whence, by equating indices, 2x = -3, and x = -1.5. 152. The logarithm of N to base a is usually written $\log_a N$, so that the same meaning is expressed by the two equations $$a^x = N$$, $x = \log_a N$. From these equations it is evident that $a^{\log_a N} = V$. Example. Find the value of log .01.00001. Let $\log_{.01} \cdot 00001 = x$; then $(.01)^x = .00001$; $$\therefore \left(\frac{1}{10^2}\right)^x = \frac{1}{100000}, \text{ or } \frac{1}{10^{2x}} = \frac{1}{10^5}.$$ $$\therefore 2x = 5, \text{ and } x = 2 \cdot 5.$$ 153. When it is understood that a particular system of logarithms is in use, the suffix denoting the base is omitted. Thus in arithmetical calculations in which 10 is the base, we usually write $\log 2$, $\log 3$,..... instead of $\log_{10} 2$, $\log_{10} 3$,..... Logarithms to the base 10 are known as **Common Logarithms**; this system was first introduced in 1615 by Briggs, a contemporary of Napier the inventor of Logarithms. Before discussing the properties of common logarithms we shall prove some general propositions which are true for all logarithms independently of any particular base. 154. The logarithm of 1 is 0. For $a^0=1$ for all values of a; therefore $\log 1=0$, whatever the base may be. 155. The logarithm of the base itself is 1. For $a^1 = a$; therefore $\log_a a = 1$. 156. To find the logarithm of a product. Let MN be the product; let a be the base of the system, and suppose so that $$x = \log_a M,$$ $y = \log_a N;$ $\alpha^x = M,$ $\alpha^y = N.$ Thus the product $MN = a^x \times a^y = a^{x+y}$; whence, by definition, $\log_a MN = x+y$ $$=\log_a M + \log_a N.$$ Similarly, $\log_a MNP = \log_a M + \log_a N + \log_a P$; and so on for any number of factors. Example. $\log 42 = \log (2 \times 3 \times 7) = \log 2 + \log 3 + \log 7$. 157. To find the logarithm of a fraction. Let $\frac{M}{N}$ be the fraction, and suppose $$x = \log_a M,$$ $y = \log_a N;$ $\alpha^x = M.$ $\alpha^y = N.$ so that Thus the fraction $$\frac{M}{N} = \frac{\alpha^x}{\alpha^y} = \alpha^{x-y};$$ whence, by definition, $\log_a \frac{M}{N} = x - y$ $$=\log_a M - \log_a N.$$ Example. $$\log (2\frac{1}{7}) = \log \frac{15}{7} = \log 15 - \log 7$$ = $\log (3 \times 5) - \log 7 = \log 3 + \log 5 - \log 7$. 158. To find the logarithm of a number raised to any power, integral or fractional. Let $\log_a(M^p)$ be required, and suppose then $$x = \log_a M$$, so that $a^x = M$; then $M^p = (a^z)^p = a^{px}$; whence, by definition, $\log_a (M^p) = px$; that is, $\log_a (M^p) = p \log_a M$. Similarly, $\log_a (M^p) = \frac{1}{r} \log_a M$. - 159. It follows from the results we have proved that - (1) the logarithm of a product is equal to the sum of the logarithms of its factors; - (2) the logarithm of a fraction is equal to the logarithm of the numerator diminished by the logarithm of the denominator; - (3) the logarithm of the pth power of a number is p times the logarithm of the number; - (4) the logarithm of the rth root of a number is $\frac{1}{r}$ of the logarithm of the number. Thus by the use of logarithms the operations of multiplication and division may be replaced by those of addition and subtraction; the operations of involution and evolution by those of multiplication and division. Example. Express $$\log \frac{a^5 \sqrt{b}}{\sqrt[8]{c^2}}$$ in terms of $\log a$, $\log b$, $\log c$. The expression $= \log (a^5 \sqrt{b}) - \log \sqrt[8]{c^2}$ $$= \log a^5 + \log \sqrt{b - \frac{2}{3}} \log c$$ $$= 5 \log a + \frac{1}{2} \log b - \frac{2}{3} \log c.$$ 160. From the equation $10^x = N$, it is evident that common logarithms will not in general be integral, and that they will not always be positive. For instance, $3154>10^3$ and $<10^4$; $\therefore \log 3154=3+a$ fraction. Again, $06>10^{-2}$ and $<10^{-1}$; $\therefore \log 06=-2+a$ fraction. - 161. Definition. The integral part of a logarithm is called the **characteristic**, and the fractional part when expressed as a decimal is called the **mantissa**. - 162. The characteristic of the logarithm of any number to base 10 can be written down by inspection, as we shall now shew. - (i) To determine the characteristic of the logarithm of any number greater than unity. It is clear that a number with two digits in its integral part lies between 10^1 and 10^2 ; a number with three digits in its integral part lies between 10^2 and 10^3 ; and so on. Hence a number with n digits in its integral part lies between 10^{n-1} and 10^n . Let X be a number whose integral part contains n digits; then $$N=10^{(n-1)+a \text{ fraction}};$$ $\therefore \log N=(n-1)+a \text{ fraction}.$ Hence the characteristic is n-1; that is, the characteristic of the logarithm of a number greater than unity is less by one than the number of digits in its integral part, and is positive. Example. The characteristics of $\log 314$, $\log 87.263$, $\log 2.78$, $\log 3500$ are respectively 2, 1, 0, 3. (ii) To determine the characteristic of the logarithm of a number less than unity. A decimal with one cipher immediately after the decimal point, such as '0324, being greater than '01 and less than '1, lies between 10^{-2} and 10^{-1} ; a number with two ciphers after the decimal point lies between 10^{-3} and 10^{-2} ; and so on. Hence a decimal fraction with n ciphers immediately after the decimal point lies between $10^{-(n+1)}$ and 10^{-n} . Let D be a decimal beginning with n ciphers; then $$D = 10^{-(n+1)+a \text{ fraction}};$$ $$\therefore \log D = -(n+1) + a$$ fraction. Hence the characteristic is -(n+1); that is, the characteristic of the logarithm of a number less than one is negative and one more than the number of ciphers immediately after the decimal point. Example. The characteristics of are respectively $$-1, -1, -4, -2.$$ 163. The
mantissa are the same for the logarithms of all numbers which have the same significant digits. For if any two numbers have the same sequence of digits, differing only in the position of the decimal point, one must be equal to the other multiplied or divided by some integral power of 10. Hence their logarithms must differ by an integer. In other words, their decimal parts or mantissæ are the same. - Examples. (i) $\log 32700 = \log (3.27 \times 10^4) = \log 3.27 + \log 10^4$ = $\log 3.27 + 4$. - (ii) $\log \cdot 0327 = \log (3 \cdot 27 \times 10^{-2}) = \log 3 \cdot 27 + \log 10^{-2}$ $= \log 3 \cdot 27 2.$ - (iii) $\log \cdot 000327 = \log (3\cdot 27 \times 10^{-4}) = \log 3\cdot 27 + \log 10^{-4}$ = $\log 3\cdot 27 - 4$. Thus, log 32700, log ·0327, log ·000327 differ from log 3·27 only in the integral part; that is the mantissa is the same in each case. - Note. The characteristics of the logarithms are 4, -2, -4 respectively. The foregoing examples shew that by introducing a suitable integral power of 10, all numbers can be expressed in one standard form in which the decimal point always stands after the first significant digit, and the characteristics are given by the powers of 10, without using the rules of Art. 162. - 164. The logarithms of all integers from 1 to 20000 have been found and tabulated. In Chambers' Mathematical Tables they are given to seven places of decimals, but for many practical purposes sufficient accuracy is secured by using four-figure logarithms. These are available for all numbers from 1 to 9999, and their use is explained on page 163_a. 165. Advantages of Common Logarithms. It will now be seen that it is unnecessary to tabulate the characteristics, since they can always be written down by inspection [Art. 162]. Also the Tables need only contain the mantissa of the logarithms of integers [Art. 163]. In order to secure these advantages it is convenient always to keep the mantissa positive, and it is usual to write the minus sign over a negative characteristic and not before it, so as to indicate that the characteristic alone is negative. Thus $\frac{1}{4}$:30103, which is the logarithm of '0002, is equivalent to -4+:30103, and must be distinguished from -4:30103, in which both the integer and the decimal are negative. 166. In the course of work we sometimes have to deal with a logarithm which is wholly negative. In such a case an arithmetical artifice is necessary in order to write the logarithm with mantissa positive. Thus a result such as -3.69897 may be transformed by subtracting 1 from the integral part and adding 1 to the decimal part. Thus $$-3.69897 = -3 - 1 + (1 - .69897)$$ $$= -4 + .30103 = \overline{4}.30103.$$ Example 1. Required the logarithm of .0002432. In the Tables we find that 3859636 is the mantissa of $\log 2432$ (the decimal point as well as the characteristic being omitted); and, by Art. 163, the characteristic of the logarithm of the given number is -4; $$\log \cdot 0002432 = \overline{4} \cdot 3859636$$. Example 2. Find the cube root of .0007, having given $\log 7 = .8450980$, $\log 887904 = 5.9483660$. Let x be the required cube root; then $$\log x = \frac{1}{3} \log (\cdot 0007) = \frac{1}{3} (\overline{4} \cdot 8450980) = \frac{1}{3} (\overline{6} + 2 \cdot 8450980);$$ $$\log x = \overline{2} \cdot 9483660;$$ $$\log 887904 = 5 \cdot 9483660;$$ $\therefore x = .0887904.$ that is, but 167. The logarithm of 5 and its powers can easily be obtained from log 2; for $$\log 5 = \log \frac{10}{2} = \log 10 - \log 2 = 1 - \log 2.$$ ### EXAMPLES. XIV. a. 1. Find the logarithms respectively of the numbers 1024, 81, 125; 01, 3, 100, to the bases 2, √3, 4, 001, 1, 01. 2. Find the values of $\log_8 16$, $\log_{81} 243$, $\log_{.01} 10$, $\log_{49} 343 \sqrt{7}$. 3. Find the numbers whose logarithms respectively to the bases 49, 25, 03, 1, 64, 100, 1, are $2, \frac{1}{5}, 2, -1, -\frac{1}{2}, 15, -4$. 4. Find the respective characteristics of the logarithms of 325, 1603, 2400, 10000, 19, to the bases 3, 11, 7, 9, 21. 5. Write down the characteristics of the common logarithms of 3.26, 523.1, .03, 1.5, .0002, 3000.1, .1. **6.** The mantissa of log 64439 is '8091488, write down the logarithms of '64439, 6443900, '00064439. 7. The logarithm of 32:5 is 1:5118834, write down the numbers whose logarithms are ·5118834, 2·5118834, 4·5118834. [When required the following logarithms may be used $\log 2 = 3010300$, $\log 3 = 4771213$, $\log 7 = 8450980$.] Find the value of **8.** log 768. **9.** log 2352. **10.** log 35·28. 11. $\log \sqrt{6804}$. 12. $\log \sqrt[5]{.00162}$. 13. $\log .0217$. log cos 60°. log sin³ 60°. log ³√see 45°. Find the numerical value of 17. $2 \log \frac{15}{8} - \log \frac{25}{162} + 3 \log \frac{4}{9}$. 18. Evaluate $$16 \log \frac{10}{9} - 4 \log \frac{25}{24} - 7 \log \frac{80}{81}$$. - Find the seventh root of 7, given log 1·320469 = ·1207283. - Find the cube root of '00001764, given log 260315 = 5.4154995. - 21. Given $\log 3571 = 3.5527899$, find the logarithm of $3.571 \times 0.03571 \times \sqrt[3]{3571}$. - 22. Given $\log 11 = 1.0413927$, find the logarithm of $(.00011)^{\frac{1}{3}} \times (1.21)^{2} \times (13.31)^{\frac{4}{3}} \div 12100000$. - 23. Find the number of digits in the integral parts of $$\left(\frac{21}{20}\right)^{300}$$ and $\left(\frac{126}{125}\right)^{1000}$. - 24. How many positive integers have characteristic 3 when the base is 7? - 168. Suppose that we have a table of logarithms of numbers to base a and require to find the logarithms to base b. $\log_a(b^y) = \log_a \mathcal{N}$: Let N be one of the numbers, then $\log_b N$ is required. Let $y = \log_b N$, so that $b^y = N$. $$y \log_a b = \log_a N;$$ $$\therefore y = \frac{1}{\log_a b} \times \log_a N,$$ $$\log_b N = \frac{1}{\log_a b} \times \log_a N. \tag{1}.$$ or that is, Now since N and b are given, $\log_a N$ and $\log_a b$ are known from the Tables, and thus $\log_b N$ may be found. Hence it appears that to transform logarithms from base a to base b we have only to multiply them all by $\frac{1}{\log_a b}$; this is a constant quantity and is given by the Tables; it is known as the modulus. If in equation (1) we put a for N, we obtain $$\log_b a = \frac{1}{\log_a b} \times \log_a a = \frac{1}{\log_a b};$$ $$\therefore \log_b a \times \log_a b = 1.$$ 169. In the following examples all necessary logarithms will be given. The use of four-figure Tables will be explained in a future section. Example 1. Given $\log 2 = 3010300$ and $\log 4844544 = 6.6852530$, find the value of $(6.4)^{\frac{1}{10}} \times (\sqrt[4]{\cdot 256})^3 \div \sqrt{80}$. Let x be the value of the expression; then $$\begin{split} \log x &= \frac{1}{10} \log \frac{64}{10} + \frac{3}{4} \log \frac{256}{1000} - \frac{1}{2} \log 80 \\ &= \frac{1}{10} (\log 2^6 - 1) + \frac{3}{4} (\log 2^8 - 3) - \frac{1}{2} (\log 2^3 + 1) \\ &= \left(\frac{6}{10} + 6 - \frac{3}{2} \right) \log 2 - \left(\frac{1}{10} + \frac{9}{4} + \frac{1}{2} \right) \\ &= \left(5 + \frac{1}{10} \right) \log 2 - 2\frac{17}{20} \\ &= 1 \cdot 5051500 + \cdot 0301030 - 2 \cdot 85. \end{split}$$ Thus $$\log x = \overline{2.6852530}$$. But $$\log 4844544 = 6.6852530,$$ $\therefore x = .04844544.$ Example 2. Find how many ciphers there are between the decimal point and the first significant digit in (.0504)10; having given $$\log 2 = 301$$, $\log 3 = 477$, $\log 7 = 845$. Denote the expression by E; then $$\begin{split} \log E = &10 \log \frac{504}{10000} \\ = &10 (\log 504 - 4) \\ = &10 \{\log (2^3 \times 3^2 \times 7) - 4\} \\ = &10 \{3 \log 2 + 2 \log 3 + \log 7 - 4\} \\ = &10 (2 \cdot 702 - 4) = &10 (\overline{2} \cdot 702) \\ = &20 + 7 \cdot 02 = \overline{13} \cdot 02. \end{split}$$ Thus the number of ciphers is 12. [Art. 162.] # Exponential equations. 170. If in an equation the unknown quantity appears as an exponent, the solution may be effected by the help of logarithms. Example 1. Solve the equation $8^{5-3x} = 12^{4-2x}$, having given $\log 2 = 30103$, and $\log 3 = 47712$. From the given equation, by taking logarithms, we have $$\begin{array}{c} (5-3x)\log 8 = (4-2x)\log 12\,; \\ \therefore \ 3\,(5-3x)\log 2 \\ = (4-2x)\,(2\log 2 + \log 3)\,; \\ \therefore \ 15\log 2 - 8\log 2 - 4\log 3 \\ = x\,(9\log 2 - 4\log 2 - 2\log 3)\,; \\ \therefore \ x = \frac{7\log 2 - 4\log 3}{5\log 2 - 2\log 3} = \frac{\cdot 19873}{\cdot 55091}. \\ \end{array}$$ Thus x = 36 nearly. Example 2. Given $\log 2 = 30103$, solve the simultaneous equations $2^x \cdot 5^y = 1$, $5^{x+1} \cdot 2^y = 2$. Take logarithms of the given equations; $$\therefore x \log 2 + y \log 5 = 0,$$ $(x+1) \log 5 + y \log 2 = \log 2.$ - For shortness, put $\log 2 = a$, $\log 5 = b$. Thus $$ax + by = 0$$, and $$b(x+1) + ay = a$$, or $bx + ay = a - b$. By eliminating y, $x(a^2-b^2)=-b(a-b)$, $$\therefore x = -\frac{b}{a+b} = -\frac{\log 5}{\log 2 + \log 5} = -\frac{\log 5}{\log 10} = -\log 5 = -.69897.$$ And $$y = -\frac{ax}{b} = \frac{a}{b} \log 5 = a = \log 2 - 30103.$$ ### EXAMPLES. XIV. b. [When required the values of log 2, log 3, log 7 given on p. 145 may be used. Find the value of 1. $$\left(\frac{147 \times 375}{126 \times 16}\right)^{\frac{3}{3}}$$, given $\log 9.076226 = 9579053$. 2. $$\sqrt[3]{378} \times \sqrt{108} \div (\sqrt[6]{1008} \times \sqrt[3]{486}),$$ given $\log 301824 = 5.4797536.$ 3. $$(1080)^{\frac{1}{2}} \times (24)^{\frac{5}{8}} \times 810$$, given $\log 2467266 = 6.3922160$. Calculate to two decimal places the values of Find how many ciphers there are before the first significant digits in $$(90378)^{\frac{4.0}{3}}$$ and $(9259)^{50}$. 8. To what base is 3 the logarithm of 11000? given $\log 11 = 1.0413927$ and $\log 222398 = 5.3471309$. Solve to two decimal places the equations: 9. $$2^{x-1} = 5$$. 10. $$3^{x-4} = 7$$. 10. $$3^{x-4} = 7$$. 11. $5^{1-x} = 6^{x-3}$. 12. $$5^x = 2^{-y}$$ and $5^{2+y} = 2^{2-x}$. 13. $$2^x = 3^y$$ and $2^{y+1} = 3^{x-1}$. 14. Given $\log 28 = a$, $\log 21 = b$
, $\log 25 = c$, find $\log 27$ and $\log 224$ in terms of a, b, c. 15. Given $\log 242 = a$, $\log 80 = b$, $\log 45 = c$, find $\log 36$ and $\log 66$ in terms of a, b, c. #### MISCELLANEOUS EXAMPLES. E. 1. Prove that $$\cos(30^{\circ} + A)\cos(30^{\circ} - A) - \cos(60^{\circ} + A)\cos(60^{\circ} - A) = \frac{1}{2}.$$ - 2. If $A + B + C = 180^{\circ}$, shew that $\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}.$ - 3. If a=2, $c=\sqrt{2}$, $B=15^{\circ}$, solve the triangle. - 4. Shew that $\cos a + \tan \frac{a}{2} \sin a = \cot \frac{a}{2} \sin a = \cos a$. - 5. If $b \cos A = a \cos B$, shew that the triangle is isosceles. - 6. Prove that - (1) $\sin \theta (\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta) = \sin 6\theta \sin 4\theta$; - (2) $\frac{\sin a + \sin 3a + \sin 5a + \sin 7a}{\cos a + \cos 3a + \cos 5a + \cos 7a} = \tan 4a.$ - 7. Shew that $\frac{\cos 3a}{\sin a} + \frac{\sin 3a}{\cos a} = 2 \cot 2a$. - 8. If $b=a(\sqrt{3}-1)$, $C=30^{\circ}$, find A and B. - 9. Show that $\tan 4a = \frac{4 \tan a 4 \tan^3 a}{1 6 \tan^2 a + \tan^4 a}$. - 10. In a triangle, shew that - (1) $a^2 \cos 2B + b^2 \cos 2A = a^2 + b^2 4ab \sin A \sin B$; $$(2) \quad 4\left(br\cos^2\frac{A}{2} + ra\cos^2\frac{B}{2} + ab\cos^2\frac{C}{2}\right) = (a+b+c)^2.$$ - 11. If $a^4 + b^4 + c^4 = 2c^2(a^2 + b^2)$, prove that $C = 45^\circ$ or 135° . [Solve as a quadratic in c^2 .] - 12. If in a triangle $\cos 3A + \cos 3B + \cos 3C = 1$, shew that one angle must be 120°. # CHAPTER XV. ### THE USE OF LOGARITHMIC TABLES. ## Seven-Figure Tables. (The use of Four-Figure Tables will be found explained on page 163,.) 171. In a book of Seven-Figure Tables there will usually be found the *mantissæ* of the logarithms of all *integers* from 1 to 100000; the *characteristics* can be written down by inspection and are therefore omitted. [Art. 162.] The logarithm of any number consisting of not more than 5 significant digits can be obtained directly from these Tables. For instance, suppose the logarithm of 336'34 is required. Opposite to 336'34 we find the figures 5267'785; this, with the decimal point prefixed, is the mantissa for the logarithms of all numbers whose significant digits are the same as 336'34. We have therefore only to prefix the characteristic 2, and we obtain $\log 336.34 = 2.5267785.$ Similarly, $\log 33634 = 4.5267785,$ $\log 0033634 = \overline{3}.5267785.$ ## 172. Suppose now that we required log 33634392. Since this number contains more than 5 significant digits it cannot be obtained directly from the tables; but it lies between the two consecutive numbers 33634 and 33635, and therefore its logarithm lies between the logarithms of these two numbers. If we pass from 33634 to 33635, making an increase of 1 in the number, the corresponding increase in the logarithm as obtained from the tables is '0000129. If now we pass from 33634 to 33634'392, making an increase of '392 in the number, the increase in the logarithm will be '392 × '0000129, provided that the increase in the logarithm is proportional to the increase in the number. Now it can be proved that when the increase made is small in comparison with the number, the increase in the logarithm is very nearly proportional to the increase in the number. This principle is known as the Rule of Proportional Parts. The application of this rule will be illustrated in the examples which follow, 173. In order to make the explanations more intelligible we give here an Extract from Chambers' Mathematical Tables. | | 5719 5848 | 7140 | 35 | 9722 2 | 1012 3 | 4 5 | 1914 | 3592 6 | 4881 7 | 3041 6170 8 10 | 4 0 | |-----|-----------|------|------|--------|--------|-----|---------|--------|--------|----------------|--------| | | 5590 57 | | ω | | | | 9.4 | 4.5 | 4. | 5912 60 | | | 9 | 5460 | 6752 | 8043 | 9334 | 0625 | | 1915 | 3205 | 4494 | 5783 | 0 | | 5 | 5331 | 6623 | 7914 | 9205 | 0496 | | 1786 | 3076 | 4366 | 5655 | 0.00 | | 4 | 5202 | 6494 | 7785 | 9076 | 0367 | | 1657 | 2947 | 4237 | 5526 | . 400 | | က | 5073 | 6365 | 7656 | 8947 | 0238 | | 1528 | 2818 | 4108 | 5397 | 0000 | | 2 | 4944 | 6235 | 7527 | 8818 | 0100 | | 1399 | 2689 | 3979 | 5268 | 1 | | 7 | 4814 | 6106 | 7398 | 8689 | 9980 | | 1270 | 2560 | 3850 | 5139 | 0 1000 | | 0 | 5264685 | 5977 | 7269 | 8560 | 9851 | | 5271141 | 2431 | 3721 | 5010 | 0000 | | No. | 3361 | 65 | 63 | 64 | 65 | | 99 | 67 | 89 | 69 | CE | 174. Suppose that log 33635 is required. In the third horizontal line we have the logarithms of numbers beginning with 3363. As the next digit is 5 we choose from this line the mantissa which stands under the column 5. We have now only to prefix the characteristic and we obtain log 33635 = 4.5267914. Similarly, $\log 33651 = 4.5269980,$ and $\log 33652 = 4.5270109$, the transition in the mantissæ from 526... to 527... being shewn by the bar drawn over 0109. This bar is repeated over each of the subsequent logarithms as far as the end of the line, and in the next line the mantissæ begin with 527. Example. Find log 33634.392. From the Tables, $\log 33635 = 4.5267914$ $\log 33634 = 4.5267785$ difference for 1 = .0000129 Now by the Rule of Proportional Parts, log 33634:392 will be greater than log 33634 by :392 times the difference for 1; hence to 7 places of decimals, we have $\begin{array}{r} 0000129 \\ \hline 392 \\ \hline \hline 11 & 258 \\ 61 \\ 38 & 7 \\ \hline 0000050 & 568 \\ \end{array}$ log 33634 = 4.5267785proportional difference for $\cdot 392 = \underbrace{\cdot 0000051}$ $\therefore \log 33634 \cdot 392 = \underbrace{4.5267836}$ In practice, the difference for 1 is usually quoted without the ciphers; if therefore we treat the difference 129 as a whole number, on multiplying by 392 we obtain the product 50.568, and we take the digits given by its integral part (51 approximately) as the proportional increase for 392. 175. The method of calculating the proportional difference for 392 which we have explained is that which must be adopted when we have nothing given but the logarithms of two consecutive numbers between which lies the number whose logarithm we are seeking. But when the Tables are used the calculation is facilitated by means of the proportional differences standing in the column to the right. This gives the differences for *tenths* of unity. The difference for '392 is obtained as follows. $$392 \times 129 = \left(\frac{3}{10} + \frac{9}{100} + \frac{2}{1000}\right) \times 129 = 39 + 11.6 + 26 = 50.86.$$ The difference for 9 quoted in the margin (really 9 tenths) is 116, and therefore the difference for 9 hundredths is 11.6; and similarly the difference for 2 thousandths is 26. In practical work, the following arrangement is adopted. 176. The following example is solved more concisely as a model for the student. In the column on the left we work from the data of the question; in the column on the right we obtain the logarithm by the use of the Tables independently of the two given logarithms. Example. Find $\log 33^{\circ}656208$, having given $\log 33656 = 4.5270625$ and $\log 33657 = 4.5270754$. 177. The Rule of Proportional Parts also enables us to find the number corresponding to a given logarithm. Example 1. Find the number whose logarithm is 2.5274023, having given $\log 3.3683 = .5274108$ and $\log 3.3682 = .5273979$. Let x be the required number; then $\frac{530}{516}$ hence x lies between '033682 and '033685, and is greater than '033682 by $\frac{44}{129} \times \cdot 000001$, that is by '00000034. $\therefore x = .03368234.$ In working from the Tables, we proceed as follows. x = .03368234. We are saved the trouble of the division, as the multiples of 129 which occur during the work are given in the approximate forms 39 and 52 in the difference column opposite to the numbers 3 and 4. Example 2. Find the fifth root of .0025612, having given $\log 2.5612 = .4084435$, $\log 3.0317 = .4816862$, $\log 3.0318 = .4817005$. $$\begin{split} \text{Let } x &= (\cdot 0025612)^{\frac{1}{5}}; \text{ then} \\ &\log x = \frac{1}{5} \log \left(\cdot 0025612 \right) = \frac{1}{5} \left(\overline{3} \cdot 4084435 \right) = \frac{1}{5} \left(\overline{5} + 2 \cdot 1084435 \right); \\ &= \overline{1} \cdot 4816887. \end{split}$$ $$\begin{array}{lll} \log x &= \bar{1}.4816887 & \log .30318 = \bar{1}.4817005 \\ \log .30317 = \bar{1}.4816862 & \log .30317 = \bar{1}.4816862 \\ \text{diff.} &= 25 & \text{diff. for } .00001 = \overline{143} \end{array}$$ ### EXAMPLES. XV. a. - Find the value of log 4951634, given that log 49516=4.6947456, log 49517=4.6947543. - 2. Find log 3·4713026, having given that log 347·13=2·5404921, log 34714=4·5405047. - 3. Find log 2849614, having given that log 2.8496=.4547839, log 2.8497=.4547991. - 4. Find $\log 57.63325$, having given that $\log 576.33 = 2.7606712$, $\log 5763.4 = 3.7606788$. - 5. Given $\log 60814 = 4.7840036$, diff. for 1 = 72, find $\log 6081465$. - Find the number whose logarithm is 4:7461735, given log 55740 = 4:7461670, log 55741 = 4:7461748. - 7. Find the number whose logarithm is 2.8283676, given $\log 6.7354 = .8283634$, $\log 6.7355 = 4.8283698$. - 8. Find the number whose logarithm is $\overline{2}$:0288435, given $\log 1068 \cdot 6 = 3 \cdot 0288152$, $\log 1 \cdot 0687 = \cdot 0288558$. - 9. Find the number whose logarithm is $\overline{3}$:9184377, given $\log 8.2877 = .9184340$, $\log 8.287.8 = 3.9184392$. - 10. Given $\log 253.19 = 2.4034465$, diff. for 1 = 172, find the number whose logarithm is $\overline{1.4034508}$. - 11. Given $\log 2 \cdot 0313 = :3077741$, $\log 2 \cdot 0314 = :3077954$, and $\log 1 \cdot 4271 = :1544544$, find the seventh root of $142 \cdot 71$. - 12. Find the eighth root of 13·89492, given log 13894=4·1428273, log 138·95=2·1428586. - 13. Find the value of $\sqrt[14]{242447}$, given $\log 2.4244 = 3846043$, diff. for 1 = 179. - 14. Find the twentieth root of 2069138, given $\log 20691 =
4.3157815$, diff. for 1 = 210. ## Tables of Natural and Logarithmic Functions. 178. Tables have been constructed giving the values of the trigonometrical functions of all angles between 0° and 90° at intervals of 10". These are called the Tables of natural sines, cosines, tangents,... In the smaller Tables, such as Chambers', the interval is 1'. The logarithms of the functions have also been calculated. Since many of the trigonometrical functions are less than unity their logarithms are negative, and as the characteristics are not always evident on inspection they cannot be omitted. To avoid the inconvenience of printing the bars over the characteristics, the logarithms are all increased by 10 and are then registered under the name of tabular logarithmic sines, cosines,... The notation used is $L \cos A$, $L \tan \theta$; thus $L \sin A = \log \sin A + 10$. For instance, $$L \sin 45 = 10 + \log \sin 45 = 10 + \log \frac{1}{\sqrt{2}}$$ $$= 10 - \frac{1}{2} \log 2 = 9.8494850.$$ 179. With certain exceptions that need not be here noticed, the rule of proportional parts holds for the natural sines, cosines,... of all angles, and also for their logarithmic sines, cosines,... In applying this rule it must be remembered that as the angle increases from 0° to 90° the functions sine, tangent, secant increase, while the co-functions cosine, cotangent, cosecant decrease. Example 1. Find the value of sin 29° 37′ 42″. Example 2. Find the angle whose cosine is '7280843. Let A be the required angle; then from the Tables, Thus the angle is 43° 16′ 26″. 180. In order to illustrate the use of the tabular logarithmic functions we give the following extract from the table of logarithmic sines, cosines,... in Chambers' Mathematical Tables. 27 Deg. | , | Sine | Diff. | Cosec. | Secant | D. | Cosine | , , | |--|--|----------------------|--|--|-------------------|--|----------------| | $\begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$ | 9.6570468
9.6572946
9.6575423
9.6577898 | 2478 2477 2475 | 10·3429532
10·3427054
10·3424577
10·3422102 | 10.0501191
10.0501835
10.0502479
10.0503124 | 644
644
645 | 9·9498809
9·9498165
9·9497521
9·9496876 | 59
58
57 | | 4 | 9.6580371 | 2473 | 10.3419629 | 10.0503124 | 646 | 9.9496230 | 56 | | 56
57
58 | 9·6706576
9·6708958
9·6711338 | 2382
2380
2378 | 10·3293424
10·3291042
10·3288662 | 10·0537968
10·0538638
10·0539308 | 670
670
671 | 9·9462032
9·9461362
9·9460692 | 4
3
2 | | 59
60
' | 9.6713716
9.6716093
Cosine | 2377
Diff. | 10·3286284
10·3283907
Secant | 10.0539979
10.0540651
Cosec. | 672
D. | 9·9460021
9·9459349
Sine | 0 | 62 Deg. 181. We have quoted here the logarithmic sines, cosecants, secants, and cosines of the angles differing by 1' between 27° 0' and 27° 4', and also between 27° 56' and 27° 60'. The same extract gives the logarithmic functions of the complements of these angles, namely those between 62° 0' and 62° 4', and those between 62° 56' and 62° 60'. The column of minutes for 27° is given on the left and increases downwards, the column for 62° is on the right and increases upwards. The names of the functions printed at the top refer to the angle 27°, the names printed at the foot refer to the angle 62°. Thus ``` L\cos 27^{\circ} 3' = 9.9496876, L\csc 27^{\circ} 58' = 10.3288662, L\sin 62^{\circ} 2' = 9.9460692, L\cos 62^{\circ} 59' = 9.6572946. ``` The first difference column gives the differences in the logarithms of the sines and cosecants, the second difference column gives the differences in the logarithms of the cosines and secants, each difference corresponding to a difference of 1' in the angle. Example 1. Find L cos 62° 57′ 12". From the Tables, $L \cos 62^{\circ} 57' = 9.6577898$ $L \cos 62^{\circ} 58' = 9.6575423$ diff. for 60'' 2475 :. proportional decrease for $12'' = \frac{12}{60} \times 2475 = 495$. $L \cos 62^{\circ} 57' = 9 \cdot 6577898$ Subtract for 12" 495 ∴ $L \cos 62^{\circ} 57' 12" = 9 \cdot 6577403$ Example 2. Given $L \sec 27^{\circ} 39' = 10.0526648$, diff. for 10'' = 110, find A when $L \sec A = 10.0527253$. $L \sec A = 10.0527253$ $I \sec 27^{\circ} 39' = 10.0526648$ diff. 605 \therefore proportional increase = $\frac{605}{110} \times 10'' = 55''$. Thus $A = 27^{\circ} 39' 55''$. ### EXAMPLES. XV. b. - 1. Find sin 38° 3′ 35″, having given that sin 38° 4′ = 6165780, sin 38° 3′ = 6163489. - 2. Find tan 38° 24′ 37.5″, having given that tan 38° 25′ =: 7930640, tan 38° 24′ =: 7925902. - 3. Find cosec 55° 21′ 28″, having given that cosec 55° 22′=1 2153535, cosec 55° 21′=1 2155978. - 4. Find the angle whose secant is 2.1809460, given $\sec 62^{\circ} 43' = 2.1815435$, $\sec 62^{\circ} 42' = 2.1803139$. - 5. Find the angle whose cosine is :8600931, given cos 30° 41′=:8600007, cos 30° 40′=:8601491. - Find the angle whose cotangent is '8766003, given cot 48° 46'= '8764620, cot 48° 45'= '8769765. - Find L sin 44° 17′ 33″, given L sin 44° 18′=9°8441137, L sin 44° 17′=9°8439842. - 8. Find $L \cot 36^{\circ} 26' 16''$, given $L \cot 36^{\circ} 27' = 10.1315840$, $L \cot 36^{\circ} 26' = 10.1318483$. - 9. Find $L\cos 55^{\circ}$ 30′ 24″, given $L\cos 55^{\circ}$ 31′=9·7529442, $L\cos 55^{\circ}$ 30′=9·7531280. - 10. Find the angle whose tabular logarithmic sine is 9:8440018, using the data of example 7. - 11. Find the angle whose tabular logarithmic cosine is 9.7530075, using the data of example 9. - 12. Given $L \tan 24^{\circ} 50' = 9.6653662$, diff. for 1' = 3313, find $L \tan 24^{\circ} 50' 52.5''$. - 13. Given L cosec 40° 5′=10·1911808, diff. for 1′=1502, find L cosec 40° 4′ 17·5″. - 182. Considerable practice in the use of logarithmic Tables will be required before the quickness and accuracy necessary in all practical calculations can be attained. Experience shews that mistakes frequently arise from incorrect quotation from the Tables, and from clumsy arrangement. The student is reminded that care in taking out the logarithms from the Tables is of the first importance, and that in the course of the work he should learn to leave out all needless steps, making his solutions as concise as possible consistent with accuracy. # Example 1. Divide 6.6425693 by .3873007. From the Tables, $$\log 6.6425 = .8223316 \\ 6 & 40 \\ 9 & 5 \\ 9 & 5 \\ 20 \\ \log 6.6425693 = .8223362 \\ \log .3873007 = 1.5880483$$ By subtraction, we obtain From the Tables, log 17·150 1·2342879 -1·2342641 238 9 229 90 3 76 Thus the quotient is 17:15093. Example 2. The hypotenuse of a right-angled triangle is $3 \cdot 141024$ and one side is $2 \cdot 593167$; find the other side. Let c be the hypotenuse, a the given side, and x the side required; then $$x^2 = c^2 - a^2 = (c + a)(c - a);$$ $c = 3.141024$ $a = 2.563167$ $\therefore 2 \log x = \log(c + a) + \log(c - a).$ $c + a = 5.734191$ From the Tables, $$\log 5.7841 = .7584653$$ $\begin{array}{r} 9 \\ 1 \\ \log .54785 = 1.7386617 \\ 7 \\ \hline \text{By addition,} \end{array}$ Dividing by 2, we have $$\begin{array}{ccc} \log x & = \cdot 2485697 \\ \log 1 \cdot 7724 & \cdot 2485617 \\ & & & 80 \\ & & & & 74 \\ & & & & & 60 \\ 2 & & & 49 \end{array}$$ Thus the required side is 1.772432. ## EXAMPLES. XV. c. [In this Exercise the logarithms are to be taken from Seven-Figure Tables.] - 1. Multiply 300:2618 by :0078915194. - 2. Find the product of 235 6783 and 357 8438. - Find the continued product of 153:2419, 2:8632503, and 07583646. - 4. Divide 1:0304051 by 27:093524. - 5. Divide 357:8364 by :00318973. - 6. Find x from the equation 0178345x 21.85632, - 7. Find the value of 3.78956 × 0536872 : 0072916. - 8. Find the cube of .83410039. - 9. Find the fifth root of 15063.018. - 10. Evaluate $\sqrt[5]{384.731}$ and $\sqrt[13]{15.7324}$. - 11. Find the product of the square root of 1034:3963 and the cube root of 353246. - 12. Subtract the square of .7503269 from the square of 1.035627. - 13. Find the value of $$\frac{(34\cdot7326)^{\frac{3}{6}}\times\sqrt[6]{2\cdot53894}}{\sqrt[5]{4\cdot39682}}.$$ Example 3. Find a third proportional to the cube of '3172564 and the cube root of 23'32873. Let x be the required third proportional; then $$(\cdot 3172564)^3 : (23 \cdot 32873)^{\frac{1}{3}} = (23 \cdot 32873)^{\frac{1}{3}} : x : x = (23 \cdot 32873)^{\frac{2}{3}} \div (\cdot 3172564)^3 ;$$ $$\therefore \log x = \frac{2}{3} \log 23 \cdot 32873 - 3 \log \cdot 3172564.$$ From the Tables, whence By subtraction, $$\log x = 2 \cdot 4076963 = 2 \cdot 4076798 = \frac{165}{120}$$ Thus the third proportional is 255.6797. - 14. Find a mean proportional between 0037258169 and 56301078. - 15. Find a third proportional to the square of '43607528 and the square root of '03751786. - **16.** Find a fourth proportional to 56712·43, 29·302564, ·33025107. - 17. Find the geometric mean between $(\cdot 035689)^{\frac{2}{5}} \ \ {\rm and} \ \ (2\cdot 879432)^{\frac{3}{7}}.$ - 18. Find a fourth proportional to $\sqrt[3]{32.7812}$, $\sqrt[5]{357.814}$, $\sqrt[4]{7836.43}$. - 19. Find the value of $\sin 27^{\circ} \ 13' \ 12'' \times \cos 46^{\circ} \ 2' \ 15''.$ - 20. Find the value of cot 97° 14′ 16″ × sec 112° 13′ 5″. - **21.** Evaluate $\sin 20^\circ 13' \ 20'' \times \cot 47^\circ \ 53' \ 15'' \times \sec 42^\circ \ 15' \ 30''.$ - **22.** Find the value of *ab* sin *C*, when $a = 324^{\circ}1368$, $b = 417^{\circ}2431$, $C = 113^{\circ}14^{\circ}16^{\circ}$. - 23. If $a:b=\sin A:\sin B$, find a, given b=378.25, $A=35^{\circ}15'33''$, $B=119^{\circ}14'18''$. - 24. Find the smallest values of θ which satisfy the equations $(1) \quad \tan^3 \theta = \frac{5}{12}; \qquad (2) \quad 3 \sin^2 \theta + 2 \sin \theta = 1.$ - 25. Find x from the equation x x sec 28° 17′ 25" = sin 23°
18′ 5" x cot 38 15′ 13". - 26. Find θ from the equation $\sin^3 \theta = \cos^2 a \cot \beta,$ where $a = 32^{\circ} 47'$ and $\beta = 41^{\circ} 49'$. H K, E, T, ## Use of Four-Figure Tables. 182.. To find the logarithm of a given number from the Tables. Example 1. Find log 38, log 380, log 0038. We first find the number 38 in the left hand column on page 374. Opposite to this we find the digits 5798. This, with the decimal point prefixed, is the mantissa for the logarithms of all numbers whose significant digits are 38. Hence, prefixing the characteristics we have $\log 38 = 1.5798$, $\log 380 = 2.5798$, $\log .0038 = \overline{3}.5798$. Example 2. Find log 3.86, log .0386, log 386000. The same line as before will give the mantissa of the logarithms of all numbers which begin with 38. From this line we choose the mantissa which stands in the column headed 6. This gives '5866 as the mantissa for all numbers whose significant digits are 386. Hence, prefixing the characteristics, we have $\log 3.86 = .5866$, $\log .0386 = \overline{2}.5866$, $\log 386000 = 5.5866$. 182_B. Similarly the logarithm of any number consisting of not more than 3 significant digits can be obtained directly from the Tables. When the number has 4 significant digits, use is made of the principle that when the difference between two numbers is small compared with either of them, the difference between their logarithms is very nearly proportional to the difference between the numbers. It would be out of place to attempt any demonstration of the principle here. It will be sufficient to point out that differences in the logarithms corresponding to small differences in the numbers have been calculated, and are printed ready for use in the difference columns at the right hand of the Tables. The way in which these differences are used is shewn in the following example. Example. Find (i) log 3.864; (ii) log .003868. Here, as before, we can find the mantissa for the sequence of digits 386. This has to be *corrected* by the addition of the figures which stand underneath 4 and 8 respectively in the difference columns (i) $$\log 3.86 = .5866$$ (ii) $\log .00386 = \overline{3}.5866$ diff. for $8 = .5871$ $\therefore \log 3.864 = .5871$ $\therefore \log .003868 = \overline{3}.587\overline{5}$ Note. After a little practice the necessary 'correction' from the difference columns can be performed mentally. 182c. The number corresponding to a given logarithm is called its antilogarithm. Thus in the last example 3.864 and 0.03868 are respectively the numbers whose logarithms are 0.5871 and 0.5875. Hence antilog .5871 = 3.864; antilog $\overline{3}.5875 = .003868$. 182_D. To find the antilogarithm of a given logarithm. In using the Tables of antilogarithms on pages 376, 377, it is important to remember that we are seeking numbers corresponding to given logarithms. Thus in the left hand column we have the first two digits of the given mantissa, with the decimal point prefixed. The characteristics of the given logarithms will fix the position of the decimal point in the numbers taken from the Tables. Example 1. Find the antilogarithm of (i) 1.583; (ii) 2.8249. (i) We first find 58 in the left hand column and pass along the horizontal line and take the number in the vertical column headed by 3. Thus 583 is the mantissa of the logarithm of a number whose significant digits are 3828. Hence antilog 1.583 = 38.28. Here corresponding to the first 3 digits of the mantissa we find the sequence of digits 6668, and the decimal point is inserted in the position corresponding to the characteristic 2. To the number so found we add 14 from the difference column headed 9, placing it under the two last digits of the given mantissa. Example 2. Find the product of 72.38 and .5689. Thus the required product is 41.17. *Example 3.* Find the value of $\frac{3.274 \times .0059}{14.83 \times .077}$ to four significant digits. By Art. 157, log fraction = log numerator - log denominator. Example 4. Find the value of $\frac{\left(330 \times \frac{1}{49}\right)^4}{\sqrt[3]{22 \times 6 \cdot 9}}$ to the nearest integer. Denote the expression by x, then $$\log x = 4 (\log 330 - \log 49) - \frac{1}{3} (\log 22 + \log 6 \cdot 9),$$ $$\log 330 = 2 \cdot 5185$$ $$\log 49 = \frac{1 \cdot 6902}{\cdot 8283}$$ $$\log 6 \cdot 9 = \frac{\cdot 8388}{\cdot 32771}$$ $$3 \cdot 3132$$ subtract \tag{7271} $\log x = 2.5861 = \text{antilog } 385.6$, from the Tables. $\therefore x = 3.86$, to the nearest integer. 5. $31.9 \times 1.51 \times 9.7$. 6. $43 \times 8.07 \times .0392$. ### EXAMPLES. XV. d. [Answers to be given to four significant figures.] Find by means of the Tables the value of the following products: 1. 2834×17·62. 2. 8·034×1893. 3. ·00567×·0297. Find the value of 4. $3.7 \times 8.9 \times 0.23$. 7. $\frac{17.3}{294.8}$. 8. $\frac{2.035}{837.6}$. 9. $\frac{2179}{08973}$. 10. $\frac{487}{6398}$ 11. $$\frac{2\cdot38\times3\cdot901}{4\cdot83}$$. 12. $\frac{14\cdot72\times38\cdot05}{387\cdot9}$. 13. $\frac{925\cdot9\times1\cdot597}{74\cdot03}$. 14. $$\frac{15.38 \times 0137}{276 \times 0038}$$. 15. $\frac{2.31 \times 037 \times 1.43}{0561 \times 3.87 \times 0091}$. 16. $$\sqrt{5\cdot 1}$$. 17. $\sqrt[3]{11}$. 18. $\sqrt[3]{82\cdot 56}$. 19. $\sqrt[4]{10\cdot 15}$. **20.** $$(.097)^4$$. **21.** $(2.301)^5$. **22.** $(51.32)^{\frac{2}{3}}$. **23.** $(.089)^{\frac{4}{7}}$. **24.** $$\sqrt{\frac{.0137 \times .0296}{873.5}}$$. **25.** $\frac{.83 \times \sqrt[3]{92}}{127 \times \sqrt[5]{246}}$. **26.** Find the value of $$\sqrt{\frac{.678 \times 9.01}{.0234}}$$ to the nearest integer. 27. Find a mean proportional between 2.87 and 30.08; and a third proportional to 0238 and 7.805. 28. Find a mean proportional between $$\sqrt[3]{347.3}$$ and $\sqrt[5]{256.4}$. 29. By taking logarithms, and solving for $\log x$ and $\log y$, find values of x and y (to four significant digits) which satisfy the equations $$x^5y^3 = 5$$, $x^2y^7 = 11$. Example 5. Find the value of the expression $\frac{\rho\omega\lambda\pi^2\eta^2}{\tau^2}$ when $\rho=7.8, \quad \omega=.66, \quad \tau=\frac{1}{2.56}, \quad \pi=3.1416, \quad \lambda=14, \quad \eta=.025.$ log $\rho=\log 7.8=.8921$ log $\omega=\log .66=1.8195$ log $\lambda=\log 14=1.1461$ log $\pi^2=2\log 3.1416=.9942$ log $\eta^2=2\log .025=\overline{4.7958}$ antilog .464=2.911 diff. for 1 1 1 antilog .4641=2.912 .c. antilog 4:4641 = 29120. # EXAMPLES. XV. d. (Continued.) - 30. Find the value of $2\pi \sqrt{\frac{l}{g}}$, when $l = 2.863, g = 32.19, \pi = 3.1416.$ - 31. When m=18.34, v=35.28, find the value of $\frac{1}{2}mv^2$. - 32. Calculate the values of - (i) pr^n , where p=93.75, r=1.03, n=4; - (ii) $\frac{4}{3}\pi r^3$, where $\pi = \frac{355}{113}$, r = 5.875. - 33. If $F = \frac{mv^2}{gr}$, find F when m = 33.47, r = 9.6, v = 60, g = 32.19. - **34.** Find r from the formula $V = \frac{4}{3}\pi r^3$, given V = 537.6, $\pi = 3.1416$. - **35.** If $s = \frac{1}{9}ft^2$, find f when s = 289.3, $t = 3\frac{7}{8}$. - **36.** If $x^n y = 8.7 \times 10^8$, find n when x = 73.96 and y = 27.25. - 37. The volume of a sphere of radius r is given by the formula $V = \frac{4}{3}\pi r^3$; find the radius of a sphere whose volume is 33:87 cu. cm. - 38. A cubical block of metal, each edge of which is 36.4 cm., is melted down into a sphere. Find the diameter of the sphere as correctly as possible with Four-Figure Tables. - 39. If $\frac{v^2}{r} = \frac{g}{289}$, calculate v, having given that $$r = 4000, \quad g = \frac{32 \cdot 2}{5280}.$$ Also show that the value of $\frac{2\pi r}{v \times 60 \times 60}$, where $\pi = 3.1416$, is approximately 24. ### Four-Figure Tables of Logarithmic Functions. 182_E. The use of Tables of *natural* sines, cosines, and tangents has been explained in Chap. IV. [See Art. 39_A.] The logarithms of the functions have also been calculated to four places of decimals. Since many of the trigonometrical functions are less than unity their logarithms are negative, and as the characteristics are not always evident on inspection they cannot be omitted. To avoid the inconvenience of printing the bars over the characteristics, the logarithms are increased by 10 and are then registered under the name of tabular logarithmic functions. The notation used is $L \sin A$, $L \tan \theta$; thus $L \sin A$ is equivalent to $\log \sin A + 10$. The Tables on pages 384—389 give the logarithmic sines, cosines, and tangents of all angles between 0° and 90° at intervals of 6 minutes. For intermediate angles the difference columns are used in the same way as for the natural functions. 182_F. When there is a change in the characteristic in the middle of a horizontal line, the transition is marked by printing a bar over the mantissa. Thus from the second page of logarithmic tangents we have | | 0' | 6' | 12' | 18' | 24' | 30' | 36′ | 42' | 48' | 54' | |-----|---------|------|------|------|------|------|------|------|------|------| | 84° | 10:9784 | 9857 | 9932 | 0008 | 0085 | 0164 | 0214 | 0326 | 0409 | 0494 | | 85° | 11:0580 | 0669 | 0759 | 0850 | 0944 | 1040 | 1138 | 1238 | 1341 | 1446 | Here the transition from 10.9... to 11.0... begins at 84° 18′. Thus and for all subsequent angles in this line the characteristic of the logarithmic tangent is 11 instead of 10. Obs. As the angle increases from 0° to 90° the logarithmic sine, tangent, and secant *increase*, while the cosine, cotangent, and cosecant *decrease*. Example 1. Find the value of L sin 41° 15'. From the Tables, L sin 41° 12' = 9.8187 diff. for 3' 4 $$L \sin 41^{\circ} 15' = 9.8191$$ Example 2. From the equation $L\cos\theta = 9.6577$, find θ to the nearest minute. $L \cos \theta = 9.6577$ $L \cos 63^{\circ} = 9.6570$, from the Tables; diff. 7, by subtraction. Hence θ is less than 63° by a number of minutes corresponding to a difference 7. Taking the nearest difference in the Table we find that 3′ must be subtracted from 63°. Thus $\theta =
62^{\circ} 57'$. 182_G. The device for securing a positive characteristic mentioned in Art. 182_E is merely a convenience for the purposes of tabulation. In practice it is more expeditious if the 10 is subtracted mentally in copying down the logarithms, as shewn in the following example. Example. Find from the Tables the value of $$\frac{\cot 27^{\circ} 12' \times \sin 34^{\circ} 17'}{\sec 77^{\circ} 23'}$$. Denote the expression by x, then $$x = \tan 62^{\circ} 48' \times \sin 34^{\circ} 17' \times \cos 12^{\circ} 37'$$. $\log x = \log \tan 62^{\circ} 48' + \log \sin 34^{\circ} 17' + \log \cos 12^{\circ} 37'$. log tan 62° 48′ = ·2891, subtracting the 10, log sin 34° 17′ = $\overline{1}$ ·7507, ,, ,, log cos 12° 37′ = $\overline{1}$ ·9894, ,, ,, log x = -292 And antilog .0232-1.069. Thus x = 1.069. ### EXAMPLES. XV. e. Find from the Tables the values of Find to the nearest minute the values of θ from the following equations: 7. $$\sin \theta = 3126$$, 8. $\cos \theta = 1782$. 8. $$\cos \theta = 1782$$. 9. $$\tan \theta = \frac{5}{7}$$. 10. $$\cot \theta = .7931$$. 11. $$\cot \theta = 1.5321$$. 12. $$\cos \theta = \frac{2}{3}$$. Find the values of Evaluate 16. $$\sin 27^{\circ} 13' \times \cos 46^{\circ} 16'$$, 17. $$\frac{\sin 47^{\circ} 13'}{\tan 22^{\circ} 27'}$$ 18. $$\frac{\sin 34^{\circ} 17' \times \tan 82^{\circ} 6'}{\cos 12^{\circ} 37'}$$. 19. $$\frac{\cos 28^{\circ} 14'}{\sec 37^{\circ} 26'}$$ - 20. Find the smallest positive angle which satisfies the equation $\tan^7 x = \frac{11}{13}$. - 21. Find the value of $ab \sin t'$ when a = 32.73, b = 27.86. $C = 30^{\circ} 16'$ - 22. Calculate the value of (i) $$na^2 \cot \frac{\pi}{n}$$, when $a = 2\bar{0}$, $n = 8$; (ii) $$\frac{n}{2}r^2 \sin \frac{2\pi}{n}$$, when $r=3:3$, $n=10$. 23. Given $$\tan \phi = \frac{2e}{1 - e^2} \sin \theta$$, find ϕ when $e = 35$, $\theta = 56^{\circ} 14'$. The length of the bisector of the angle A of a triangle ABC is $\frac{2bc}{b+c}\cos\frac{A}{2}$. Assuming this, find its value when $$b=32.78$$, $c=19.23$, $A=115.34$, 25. Evaluate $$\frac{2v^2 \sin a}{g(1-e)^2 \cos^2 a}$$, when $v = 48$, $a = 23$, $g = 32 \cdot 19$, $e = 37$. ### CHAPTER XVI. #### SOLUTION OF TRIANGLES WITH LOGARITHMS. (The section on Four-Figure Tables, page 183, may be taken after Art. 188.) 183. The examples on the solution of triangles in Chap. XIII. furnish a useful exercise on the formulæ connecting the sides and angle of a triangle; but in practical work much of the labour of arithmetical calculation is avoided by the use of logarithms. We shall now shew how the formulæ of Chap. XIII. may be used or adapted for use in connection with logarithmic Tables. 184. To find the functions of the half-angles in terms of the sides. We have $$2\sin^2\frac{A}{2} = 1 - \cos A$$ $$= 1 - \frac{b^2 + c^2 - a^2}{2bc}$$ $$= \frac{2bc - b^2 - c^2 + a^2}{2bc} = \frac{a^2 - (b^2 - 2bc + c^2)}{2bc}$$ $$= \frac{a^2 - (b - c)^2}{2bc} = \frac{(a + b - c)(a - b + c)}{2bc}.$$ Let a+b+c=2s; then a+b-c=2s-2c=2(s-c), and $$a-b+c=2s-2b=2$$ (s-b). $$\therefore 2\sin^2\frac{A}{2} = \frac{4(s-c)(s-b)}{2bc} = \frac{2(s-b)(s-c)}{bc};$$ $$\therefore \sin \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{bc}}.$$ Again, $$2\cos^2\frac{A}{2} = 1 + \cos A = 1 + \frac{b^2 + c^2 - a^2}{2bc}$$ $$= \frac{(b+c)^2 - a^2}{2bc} = \frac{(b+c+a)(b+c-a)}{2bc};$$ $$\therefore 2\cos^2\frac{A}{2} = \frac{4s(s-a)}{2bc} = \frac{2s(s-a)}{bc};$$ $$\therefore \cos\frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}.$$ Also $\tan\frac{A}{2} = \sin\frac{A}{2} \div \cos\frac{A}{2}$ $$= \sqrt{\frac{(s-b)(s-c)}{bc} \times \frac{bc}{s(s-a)}};$$ $$\therefore \tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}.$$ 185. Similarly it may be proved that $$\sin \frac{B}{2} = \sqrt{\frac{\overline{(s-c)}(s-a)}{ca}}, \qquad \sin \frac{C}{2} = \sqrt{\frac{\overline{(s-a)}(s-b)}{ab}};$$ $$\cos \frac{B}{2} = \sqrt{\frac{\overline{s}(s-b)}{ca}}, \qquad \cos \frac{C}{2} = \sqrt{\frac{\overline{s}(s-c)}{ab}};$$ $$\tan \frac{B}{2} = \sqrt{\frac{\overline{(s-c)}(s-a)}{s(s-b)}}, \qquad \tan \frac{C}{2} = \sqrt{\frac{\overline{(s-a)}(s-b)}{s(s-c)}}.$$ In each of these formulae the positive value of the square root must be taken, for each half angle is less than 90°, so that all its functions are positive. 186. To find sin A in terms of the sides. $$\sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}$$ $$= 2 \sqrt{\frac{(s-b)(s-c)}{bc} \times \frac{s(s-a)}{bc}};$$ $$\therefore \sin A = \frac{2}{bc} \sqrt{s(s-a)(s-b)(s-c)}.$$ We may also obtain this formula in another way which is instructive. We have $$\sin^2 A = 1 - \cos^2 A = (1 + \cos A) (1 - \cos A)$$ $$= \left(1 + \frac{b^2 + c^2 - a^2}{2bc}\right) \left(1 - \frac{b^2 + c^2 - a^2}{2bc}\right)$$ $$= \frac{(b + c)^2 - a^2}{2bc} \times \frac{a^2 - (b - c)^2}{2bc}$$ $$= \frac{(b + c + a) (b + c - a) (a + b - c) (a - b + c)}{4b^2c^2}$$ $$= \frac{16s (s - a) (s - b) (s - c)}{4b^2c^2};$$ $$\therefore \sin A = \frac{2}{bc} \sqrt{s (s - a) (s - b) (s - c)}.$$ The positive value of the square root must be taken, since the *sine* of an angle of any triangle is always positive. ### EXAMPLES. XVI. a. Prove the following formulæ in any triangle: 1. $$b\cos^2\frac{A}{2} + a\cos^2\frac{B}{2} - s$$. 2. $s\tan\frac{B}{2}\tan\frac{C}{2} = s - a$. 3. $$\frac{\text{vers } A}{\text{vers } B} = \frac{a(a+c-b)}{b(b+c-a)}$$. 4. $b\sin^2\frac{A}{2} + a\sin^2\frac{B}{2} - s - c$. 5. $$(s-a)\tan\frac{A}{2} = (s-b)\tan\frac{B}{2} = (s-c)\tan\frac{C}{2}$$. **6.** Find the value of $$\tan \frac{B}{2}$$, when $a = 10, b-17, c-21$. 7. Find $$\cot \frac{C}{2}$$, when $a = 13$, $b = 14$, $c = 15$. 8. Prove that $$\frac{1}{a}\cos^2\frac{A}{2} + \frac{1}{b}\cos^2\frac{B}{2} + \frac{1}{c}\cos^2\frac{C}{2} = \frac{s^2}{abc}.$$ 9. Prove that $$\frac{b-c}{a}\cos^2\frac{A}{2} + \frac{c-a}{b}\cos^2\frac{B}{2} + \frac{a-b}{c}\cos^2\frac{C}{2} = 0.$$ 187. To solve a triangle when the three sides are given. From the formula $$\tan\frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}},$$ $\log \tan \frac{A}{2} = \frac{1}{2} \left\{ \log (s-b) + \log (s-c) - \log s - \log (s-a) \right\};$ whence $\frac{1}{2}$ may be obtained by the help of the Tables. Similarly B can be found from the formula for $\tan \frac{B}{2}$, and then C from the equation $C=180^{\circ}-A-B$. In the above solution, we shall require to look out from the tables four logarithms only, namely those of s, s-a, s-b, s-c; whereas if we were to solve from the sine or cosine formula we should require six logarithms; for $$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}$$ and $\cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ca}}$, so that we should have to look out the logarithms of the six quantities s, s-a, s-b, a, b, c. If therefore all the angles have to be found by the use of the tables it is best to solve from the tangent formule; but if one angle only is required it is immaterial whether the sine, cosine, or tangent formula is used. In cases where a solution has to be obtained from certain given logarithms, the choice of formulæ must depend on the data. Note. We shall always find the angles to the nearest second, so that, on account of the multiplication by 2, the half-angles should be found to the nearest tenth of a second. 188. In Art. 178 we have mentioned that 10 is added to each of the logarithmic functions before they are registered as tabular logarithms; but this device is introduced only as a convenience for the purposes of tabulation, and in practice it will be found that the work is more expeditious if the tabular logarithms are not used. The 10 should be subtracted mentally in copying down the logarithms. Thus we should write $\log \sin 64^{\circ} \ 15' = \overline{1} \cdot 9545793$, $\log \cot 18^{\circ} \ 35' = \cdot 4733850$, and in the arrangement of the work care must be taken to keep the mantissa positive. Example 1. The sides of a triangle are 35, 49, 63; find the greatest angle; given $\log 2=3010300,\ \log 3=4771213,$ $L \cos 47^{\circ} 53' = 9.8264910$, diff. for 60'' = 1397. Since the *angles* of a triangle depend only on the *ratios* of the sides and not on their actual magnitudes, we may substitute for the sides any lengths proportional to them. Thus in the present case we may take a=5, b=7, c=9: then C is the greatest angle, and $$\cos \frac{C}{2} = \sqrt{\frac{s\left(s-c\right)}{ab}} = \sqrt{\frac{21}{2} \times \frac{3}{2} \times \frac{1}{5 \times 7}} = \sqrt{\frac{9}{20}};$$ $$\therefore \log \cos \frac{C}{2} = \frac{1}{2} \left(2 \log 3 - \log 2 - 1\right).$$ $$2 \log 3 = \frac{9542426}{1\cdot 3010300}$$ $$2) \frac{1 \cdot 6532126}{1\cdot 8266063}$$ Thus $$\log \cos \frac{C}{2} = \bar{1} \cdot 8266063$$ $$\begin{array}{c} \log \cos 47^{\circ} \ 53' = \overline{1} \cdot 8264910 \\ \text{diff.} & \overline{1153} \\ \therefore \ \text{proportional} \ decrease = \frac{1153}{1397} \times 60'' = 49 \cdot 5''; \\ \therefore \ \frac{C}{2} = 47^{\circ} \ 52' \ 10 \cdot 5''. \\ \end{array}$$ Thus the greatest angle is 95° 44′ 21″. Example 2. If a=283, b=317, c=428, find all the angles. $$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-e)}{s(s-a)}} = \sqrt{\frac{197 \times 86}{514 \times 231}};$$ $$\therefore \log \tan \frac{A}{2} = \frac{1}{2} (\log 197 + \log 86 - \log 514 - \log 231).$$ From the Tables, $$\log 197 = 2 \cdot 2944662$$ $$\log 86 = 1 \cdot 9344985$$ $$\log 231 = 2 \cdot 3636120$$ 5.0745751 $$\begin{array}{c|c} \log 197 = 2 \cdot 2944662 & \log \\ \log 86 = \underbrace{1 \cdot 9344985}_{4 \cdot 2289647} & \log \\ & \underbrace{\frac{5 \cdot 0745751}{1 \cdot 1543896}}_{2363} & \log \\ \log \tan \frac{A}{2} = \overline{1} \cdot 5771948 \\ \log \tan 20^{\circ} 41' = \underbrace{1 \cdot 5769585}_{2363} & \text{diff.} \end{array}$$ 3412) 85080 (24°9 6824 16840 $\frac{13648}{31920}$ But diff. for 60" is 3822, $$\therefore \text{ prop!. increase} = \frac{2363}{8822} \times 60" = 37 \cdot 1";$$ $$\therefore \frac{A}{2} = 20^{\circ} 41' \, 37 \cdot 1" \text{ and } A = 41^{\circ} \, 23' \, 14".$$ $$\text{Again,} \quad \tan \frac{B}{2}
= \sqrt{\frac{(s-c) \, (s-a)}{s \, (s-b)}} = \sqrt{\frac{86 \times 231}{514 \times 197}};$$ $$\therefore \log \tan \frac{B}{2} = \frac{1}{2} \, (\log 86 + \log 231 - \log 514 - \log 197).$$ $$\log 86 = 1 \cdot 9344985 \qquad \log 514 = 2 \cdot 7109631 \log 231 = 2 \cdot 3636120 \log 197 = 2 \cdot 2944662 \frac{4 \cdot 2981105}{5 \cdot 0054293}$$ $$2 \cdot 1 \cdot 2926812$$ $$\log \tan \frac{B}{2} = 1 \cdot 6461988 \text{ diff.}$$ $$\log 1418$$ But diff. for 60" is 3412; $\therefore \frac{B}{2} = 23^{\circ} 53' 24.9'' \text{ and } B = 47^{\circ} 46' 50''.$ Thus $A = 41^{\circ} 23' 14''$, $B = 47^{\circ} 46' 50''$, $C = 90^{\circ} 49' 56''$. .. prop!. increase = $\frac{1418}{3412} \times 60'' = 24.9''$. ### EXAMPLES. XVI. b. 1. The sides of a triangle are 5, 8, 11; find the greatest angle; given $\log 7 = 8450980$, $L \sin 56^{\circ} 47' = 9.9225205$, $L \sin 56^{\circ} 48' = 9.9226032$. - 2. If a = 40, b = 51, c = 43, find A; given $L \tan 24^{\circ} 44' 13'' = 9.6634464$, $\log 128 = 2.1072100$, $\log 603 = 2.7803173$. - 3. The sides a, b, c are as 4:5:6, find B; given log 2, L cos 27° 53′=9.9464040, diff. for 1′=669. 4. Find the greatest angle of the triangle in which the sides are 5, 6, 7; given $\log 6 = .7781513$, $L\cos 39^{\circ} 14' = 9.8890644$, diff. for 1' = 1032. - 5. If a=3, b=1.75, c=2.75, find C; given $\log 2$, $L \tan 32^{\circ} 18' = 9.8008365$, diff. for 1'=2796. - 6. If the sides are 24, 22, 14, find the least angle; given $L \tan 17^{\circ} 33' = 9.500042$, diff. for 1' = 439. - 7. Find the greatest angle when the sides are 4, 10, 11; given $\log 2$, $\log 3$, $L\cos 46^{\circ} 47' = 9.8355378$, diff. for 1' = 1345. 8. If a:b:c=15:13:14, find the angles; given $\log 2$, $\log 3$, $\log 7$, $L \tan 26^{\circ} 33' = 9.6986847$, diff. for 1' = 3159, $L \tan 29^{\circ} 44' = 9.7567587$, diff. for 1' = 2933. - If a: b: c=3: 4: 2, find the angles; given log 2, log 3, L tan 14° 28′= 9·4116146, diff. for 10″=870, L tan 52° 14′=10·1108395, diff. for 10″=435. - 189. To solve a triangle having given two sides and the included angle. Let the given parts be b, c, A, and let $$k = \frac{\sin B}{b} = \frac{\sin C}{c};$$ then $$\frac{\sin B - \sin C}{\sin B + \sin C} = \frac{kb - kc}{kb + kc} = \frac{b - c}{b + c};$$ $$\cdot \cdot \frac{2\cos\frac{B+C}{2}\sin\frac{B-C}{2}}{2\sin\frac{B+C}{2}\cos\frac{B-C}{2}} = \frac{b-c}{b+c};$$ $$\therefore \frac{\tan \frac{B-C}{2}}{\tan \frac{B+C}{2}} = \frac{b-c}{b+c};$$ $$\therefore \tan \frac{B-C}{2} = \frac{b-c}{b+c} \tan \frac{B+C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2},$$ since $\frac{B+C'}{2} = 90^{\circ} - \frac{A}{2}$. $$\therefore \log \tan \frac{B-C}{2} = \log (b-c) - \log (b+c) + \log \cot \frac{A}{2},$$ from which equation we can find $\frac{B-C}{2}$. Also $$\frac{B+C}{2} = 90^{\circ} - \frac{A}{2}$$, and is therefore known. By addition and subtraction we obtain B and C. From the equation $a = \frac{b \sin A}{\sin B}$, $\log a = \log b + \log \sin A - \log \sin B$; whence a may be found. Example 1. If the sides a and b are in the ratio of 7 to 3, and the included angle C is 60° , find A and B; given $\log 2 = .3010300$, $\log 3 = .4771213$. $L \tan 34^{\circ} 42' = 9.8403776$, diff. for 1' = 2699. $$\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2} = \frac{7-3}{7+3} \cot 30^{\circ} = \frac{4}{10} \sqrt{3};$$: $$\log \tan \frac{A-B}{2} = 2 \log 2 - 1 + \frac{1}{2} \log 3$$; $$\therefore \log \tan \frac{A-B}{2} = \bar{1}.8406207$$ log tan $$34^{\circ} 42' = 1.8403776$$ diff. 2431 :. prop!, increase = $$\frac{2431}{2699} \times 60'' = 54''$$; $$\therefore \frac{A-B}{2} = 34^{\circ} 42' 54''.$$ And $$\frac{A+B}{2} = 90^{\circ} - \frac{C}{2} = 60^{\circ}.$$ By addition, $A = 94^{\circ} 42' 54''$, and by subtraction, $B = 25^{\circ} 17' 6''$. $$\frac{2 \log 2 = 6020600}{\frac{1}{2} \log 3 = 2385607}$$ $\begin{array}{r} 2431 \\ \underline{60} \\ 2699) \underline{145860} (54) \\ \underline{13495} \\ 10910 \\ \underline{10796} \end{array}$ Example 2. If $a\!=\!681,~c\!=\!243,~B\!=\!50^{\circ}\,42',$ solve the triangle, by the use of Tables. $$\tan \frac{A-C}{2} = \frac{a-c}{a+c} \cot \frac{B}{2} = \frac{438}{924} \cot 25^{\circ} 21';$$ $$\therefore \log \tan \frac{A-C}{2} = \log 438 - \log 924$$ $$+ \log \cot 25^{\circ} 21^{\circ}$$ $$\therefore \log \tan \frac{A-C}{2} = \cdot 0002383$$ And diff. for 60" is 2527; :. prop¹. increase = $$\frac{2383}{2527} \times 60'' = 57''$$; $$\therefore \frac{A-C}{2} = 45^{\circ} 0' 57''.$$ Also $$\frac{A+C}{2} = 90^{\circ} - \frac{B}{2} = 64^{\circ} 39'$$. By addition, $A = 109^{\circ} 39' 57''$ and by subtraction, $C = 19^{\circ} 38' 3''.$ Again, $$b = \frac{c \sin B}{\sin C}$$; ∴ $$\log b = \log c + \log \sin B - \log \sin C$$ = $\log 243 + \log \sin 50^{\circ} 42'$ - $\log \sin 19^{\circ} 38' 3''$ $$b = 559.63$$. $$\log \sin 19^{\circ} 38' = 1^{\circ}5263387$$ $$\frac{3}{60} \times 3540 = 177$$ $$\log \sin 19^{\circ} 38' 3'' = 1^{\circ}5263564$$ $$\log 243 = 2.3856063$$ $$\log \sin 50^{\circ} 42' = \overline{1}.8886513$$ $$2.2742576$$ $\log \sin 19^{\circ} 38' 3'' = 1.5263564 \\ 2.7479012$ Thus $A = 109^{\circ} 39' 57''$, $C = 19^{\circ} 38' 3''$, $b = 559 \cdot 63$. 190. From the formula $$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2},$$ $$\begin{array}{c} \log 438 = 2.6414741 \\ \log \cot 25^{\circ} 21' = \ \, \cdot 3244362 \\ \hline 2.9659103 \\ \log 924 = 2.9656720 \\ \hline \, \cdot 0002383 \end{array}$$ it will be seen that if b, c, and B-C are known A can be found; that is, the triangle can be solved when the given parts are two sides and the difference of the angles opposite to them. ### EXAMPLES. XVI. c. - 1. If a=9, b=6, $C=60^{\circ}$, find A and B; given $\log 2$, $\log 3$, L $\tan 19^{\circ}$ 6'=9.5394287, L $\tan 19^{\circ}$ 7'=9.5398371. - If a=1, c=9, B=65°, find A and C; given log 2, L cot 32° 30′=10·1958127, L tan 51° 28′=10·0988763, diff. for 1′=2592. - 3. If 17a = 7b, $C = 60^{\circ}$, find A and B; given $\log 2$, $\log 3$, L tan 35° 49' = 9.8583357, diff. for 10'' = 2662. - 4. If b = 27, c = 23, $A = 44^{\circ}$ 30', find B and C; given $\log 2$, $L \cot 22^{\circ}$ 15' = 10'3881591, $L \tan 11^{\circ}$ 3' = 9'2906713, diff. for 1' = 6711. - 5. If e=210, a=110, $B=34^{\circ}$ 42' 30", find C and A; given $\log 2$, $L \cot 17^{\circ} 21' 15'' = 10.5051500.$ **6.** Two sides of a triangle are as 5 : 3 and include an angle of 60° 30′: find the other angles; given log 2, $L \cot 30^{\circ} 15' = 10.23420,$ $L \tan 23^{\circ} 13' = 9.63240,$ diff, for 1' = 35. - 7. If a = 327, c = 256, $B = 56^{\circ}$ 28', find A and C'; given $\log 7.1 = .8512583$, $\log 5.83 = .7656686$, $L \tan 61^{\circ}$ 46' = 10.2700705, $L \tan 12^{\circ}$ 46' = 9.3552267, diff. for 1' = 5859. - If b=4c, A=65°, find B and C; given log 2, log 3, L tan 57° 30'=10·1958127, L tan 43° 18'= 9·9742133, diff. for 1'=2531. - **9.** If a = 23031, b = 7677, $\ell' = 30^{\circ} 10' 5''$, find A and B; given log 2, L tan 15° 5′=9°4305727, diff. for 10″=838, L cot 61° 41′=9°7314436, diff. for 10″=504. ·1135869 191. To solve a triangle having given two angles and a side. Let the given parts be denoted by B, C, a; then the third angle A is found from the equation $A = 180^{\circ} - B - C$, and $$b = \frac{a \sin B}{\sin A};$$ $$\therefore \log b = \log a + \log \sin B - \log \sin A$$: whence b may be found. Similarly, c may be obtained from the equation $\log c = \log a + \log \sin C - \log \sin A$. Example. If $b=1000,\ A=45^\circ,\ C=68^\circ\,17'\,40'',\ {\rm find}$ the least side, having given $$\label{eq:log2} \begin{array}{l} \log 2 = :3010300, \ \log 7 \cdot 6986 = :8864118, \ \mathrm{diff.} \ \mathrm{for} \ 1 = 57, \\ L \sin 66^{\circ} \, 42' = 9 \cdot 9630538, \ \mathrm{diff.} \ \mathrm{for} \ 1' = 544. \end{array}$$ $$B = 180^{\circ} = 45^{\circ} - 68^{\circ} 17' 40'' = 66^{\circ} 42' 20''$$. The least side = $$a = \frac{b \sin A}{\sin B} = \frac{1000 \sin 45^{\circ}}{\sin 66^{\circ} 42' 20''}$$; $$\begin{array}{lll} \therefore \ \log a = 3 + \log \frac{1}{\sqrt{2}} - \ \log \sin 66^{\circ} \ 42' \ 20'' & \log \sin 66^{\circ} \ 42' = 1 \cdot 9630538 \\ = 3 - \frac{1}{2} \log 2 - \log \sin 66^{\circ} \ 42' \ 20'' & \frac{20}{60} \times 544 = 181 \\ = 3 - \cdot 1135869 & \frac{1}{2} \log 2 = \cdot 1505150 \end{array}$$ $$\begin{array}{c} \therefore \log a = 2.8864131 \\ \log 769.86 = 2.8864118 \\ \text{diff.} & 13 \end{array}$$ $$\therefore$$ prop¹. increase = $\frac{13}{57}$ = ·22. Thus the least side is 769.8622. ### EXAMPLES. XVI. d. If B=60° 15′, C=54° 30′, a=100, find c; given L sin 54° 30′=9·9106860, log 8·9646162=·9525317, L sin 65° 15′=9·9581543. - 2. If $A = 55^{\circ}$, $B = 65^{\circ}$, c = 270, find a; given log 2, log 3, log 25538 = 4·4071869, $L \sin 55^{\circ} = 9·9133645$, log 25539 = 4·4072039. - 3. If $A = 45^{\circ}$ 41', $C = 62^{\circ}$ 5', b = 100, find c; given $\log 9.2788 = .96749$, $L \sin 62^{\circ}$ 5' = 9.94627, $L \sin 72^{\circ}$ 14' = 9.97878. - 4. If $B=70^{\circ} 30'$, $C=78^{\circ} 10'$, a=102, find b and c; given $\log 1.02=.009$, $\log 1.85=.267$, $\log 1.92=.283$, $L\sin 70^{\circ} 30'=9.974$, $L\sin 78^{\circ} 10'=9.990$, $L\sin 31^{\circ} 20'=9.716$. - 5. If a = 123, $B = 29^{\circ}$ 17', $C = 135^{\circ}$, find a; given $\log 2$, $\log 123 = 2.0899051$, $L \sin 15^{\circ}$ 43' = 9.4327777, $\log 32110 = 4.5066403$, D = 135. - 6. If $A=44^{\circ}$, $C=70^{\circ}$, $b=1006\cdot62$, find a and c; given $L\sin 44^{\circ}=9\cdot8417713$, $\log 100662=5\cdot0028656$, $L\sin 66^{\circ}=9\cdot9607302$, $\log 103543=5\cdot0151212$, $L\sin 70^{\circ}=9\cdot9729858$, $\log 7654321=6\cdot8839067$. - 7. If a = 1652, $B = 26^{\circ}$ 30′, $C = 47^{\circ}$ 15′, find b and c; $L\sin 73^{\circ}$ 45′ = 9·9822938, $\log 1\cdot652 = \cdot2180100$, $L\sin 26^{\circ}$ 30′ = 9·6495274, $\log 7\cdot6780 = \cdot8852481$, D = 57, $L\sin 47^{\circ}$ 15′ = 9·8658868, $\log 1\cdot2636 = \cdot1016096$, D = 344. -
192. To solve a triangle when two sides and the angle opposite to one of them are given. Let a, b, A be given. Then from $\sin B = \frac{b}{a} \sin A$, we have $\log \sin B = \log b - \log a + \log \sin A$; whence B may be found; then C is found from the equation $C = 180^{\circ} - A - B$. Again, $c = \frac{a \sin C}{\sin A}$, $\therefore \log c = \log a + \log \sin C - \log \sin A.$ If a < b, and A is acute the solution is ambiguous and there will be two values of B supplementary to each other, and also two values of C and c. [Art. 147.] Example. If b = 63, c = 36, $C = 29^{\circ} 23' 15''$, find B; given $\log 2 = \cdot 3010300$, $\log 7 = \cdot 8450980$. $L \sin 29^{\circ} 23' = 9 \cdot 6907721$, diff. for 1' = 2243, $L \sin 59^{\circ} 10' = 9 \cdot 9338222$, diff. for 1' = 755. $$\sin B = \frac{b}{c} \sin C = \frac{63}{36} \sin C$$ $$= \frac{7}{4} \sin 29^{\circ} 23' 15'';$$ ∴ $\log \sin B = \log 7 - 2 \log 2 + \log \sin 29^{\circ} 23' 15'';$ $\begin{array}{c} \therefore \ \log \sin B = 1^{\circ}9338662 \\ \log \sin 59^{\circ} \ 10' = \overline{1^{\circ}9338222} \\ \text{diff.} \end{array}$... propl. increase = $\frac{440}{755} \times 60'' = 35''$; $\therefore B = 59^{\circ} 10' 35''.$ Also since c < b there is another value of B supplementary to the above, namely $B = 120^{\circ} 49' 25''$. $$\log \sin 29^{\circ}23' = 1.6907721$$ $$\frac{15}{60} \times 2243 = 561$$ $$\log 7 = .8450980$$ $$2 \log 2 = .6020600$$ $$1.9338662$$ $\begin{array}{r} 440 \\ 60 \\ 755) \overline{26400} (35) \\ \underline{2265} \\ 3750 \\ 3775 \end{array}$ ## EXAMPLES. XVI. e. - 1. If a = 145, b = 178, $B = 41^{\circ}$ 10′, find A; given $\log 178 = 2.2504200$, $L \sin 41^{\circ}$ 10′ = 9.8183919, $\log 145 = 2.1613680$, $L \sin 32^{\circ}$ 25′ 35″ = 9.7293399. - 2. If $A = 26^{\circ}$ 26′, b = 127, a = 85, find B; given $\log 1.27 = .1038037$, $L \sin 26^{\circ}$ 26′ = 9.6485124, $\log 8.5 = .9294189$, $L \sin 41^{\circ}$ 41′ 28″ = 9.8228972. - 3. If c=5, b=4, $C=45^{\circ}$, find A and B; given $\log 2 = 30103$, $L \sin 34^{\circ} 26' = 9.7525750$. - 4. If a = 1405, b = 1706, $A = 40^{\circ}$, find B; given $\log 1.405 = .1476763$, $\log 1.706 = .2319799$, $L \sin 40^{\circ} = 9.8080675$, $L \sin 51^{\circ} 18' = 9.8923342$, diff. for 1' = 1012. - 5. If $B=112^{\circ}$ 4', b=573, c=394, find A and C; given $\log 573 = 2.7581546$, $\log 394 = 2.5954962$, $L\sin 39^{\circ}$ 35' = 9.8042757, diff. for 60" = 1527, $L\cos 22^{\circ}$ 4' = 9.9669614. - 6. If b=8⁴, c=12, B=37° 36′, find A; given log 7='8450980, L sin 37° 36′=9'7854332, L sin 60° 39′=9'9403381, diff. for 1′=711. - 7. Supposing the data for the solution of a triangle to be as in the three following cases, point out whether the solution will be ambiguous or not, and find the third side in the obtuse angled triangle in the ambiguous case: - (i) $A = 30^{\circ}$, a = 125 feet, c = 250 feet, - (ii) $A = 30^{\circ}$, a = 200 feet, c = 250 feet. - (iii) $A = 30^{\circ}$, a = 200 feet, c = 125 feet. Given log 2, $\begin{array}{ll} \log 6.0389 = .7809578, & L \sin 38^{\circ} 41' = 9.7958800, \\ \log 6.0390 = .7809650, & L \sin 8^{\circ} 41' = 9.1789001. \end{array}$ - 193. Some formulæ which are not primarily suitable for working with logarithms may be adapted to such work by various artifices. - 194. To adapt the formula $c^2 = a^2 + b^2$ to logarithmic computation. We have $$c^2 = a^2 \left(1 + \frac{b^2}{a^2} \right).$$ Since an angle can always be found whose tangent is equal to a given numerical quantity, we may put $\frac{b}{a} = \tan \theta$, and thus obtain $$c^2 = a^2 (1 + \tan^2 \theta) = a^2 \sec^2 \theta$$; $\therefore c = a \sec \theta$; $\therefore \log c = \log \alpha + \log \sec \theta$. The angle θ is called a subsidiary angle and is found from the equation $\log \tan \theta = \log b - \log a$. Thus any expression which can be put into the form of the sum of two squares can be readily adapted to logarithmic work. **195.** To adapt the formula $c^2 = a^2 + b^2 - 2ab \cos C$ to logarithmic computation. From the identities $$\cos \ell = \cos^2 \frac{\ell}{2} - \sin^2 \frac{\ell}{2}$$, and $1 = \cos^2 \frac{\ell}{2} + \sin^2 \frac{\ell'}{2}$, we have $$\begin{split} c^2 &= (a^2 + b^2) \left(\cos^2 \frac{C}{2} + \sin^2 \frac{C}{2} \right) - 2ab \left(\cos^2 \frac{C}{2} - \sin^2 \frac{C}{2} \right) \\ &= (a^2 + b^2 - 2ab) \cos^2 \frac{C}{2} + (a^2 + b^2 + 2ab) \sin^2 \frac{C}{2} \\ &= (a - b)^2 \cos^2 \frac{C}{2} + (a + b)^2 \sin^2 \frac{C}{2} \\ &= (a - b)^2 \cos^2 \frac{C}{2} \left\{ 1 + \left(\frac{a + b}{a - b} \right)^2 \tan^2 \frac{C}{2} \right\}. \end{split}$$ Take a subsidiary angle θ , such that $$\tan \theta = \frac{a+b}{a-b} \tan \frac{C}{2},$$ then $$c^2 = (a-b)^2 \cos^2 \frac{C}{2} (1 + \tan^2 \theta)$$ $= (a-b)^2 \cos^2 \frac{C}{2} \sec^2 \theta;$ $\therefore c = (a-b) \cos \frac{C}{2} \sec \theta;$ $\therefore \log c = \log(a-b) + \log \cos \frac{C}{2} + \log \sec \theta,$ where θ is determined from the equation $$\log \tan \theta = \log (a+b) - \log (a-b) + \log \tan \frac{C}{2}.$$ 196. When two sides and the included angle are given, we may solve the triangle by finding the value of the third side first instead of determining the angles first as in Art. 189. Example. If a=3, c=1, $B=53^{\circ}$ 7' 48" find b; given $\log 2=3010300$, $\log 2\cdot5298=4030862$, diff. for 1=172, $L\cos 26^{\circ}$ 33' $54''=9\cdot9515452$, $L\tan 26^{\circ}$ 33' $54''=9\cdot6989700$. ·4030902 We have $b^2 = c^2 + a^2 - 2ca \cos B$ where ∴ $$\log \tan \theta = \log 2 + \log \tan 26^{\circ} 33' 54''$$ = $\cdot 3010300 + \overline{1} \cdot 6989700$ = 0: whence $\tan \theta = 1$, and $\theta = 45^{\circ}$. From (1), $$b = (a - c) \cos \frac{B}{2} \sec \theta$$ = $2 \sec 45^{\circ} \cos \frac{B}{2}$ = $2 \sqrt{2} \cos 26^{\circ} 33' 54''$; $$\begin{array}{c} \therefore \, \log b \! = \! \log 2 + \frac{1}{2} \log 2 \\ + \log \cos 26^\circ 33' 54'' \\ \vdots \, \log b = \! \cdot \! 4030902 \\ \log 2 \! \cdot \! 5298 = \! \cdot \! 4030862 \\ \text{diff.} \end{array} \begin{array}{c} \log 2 = \cdot \! 3010300 \\ \frac{1}{2} \log 2 = \cdot \! 1505150 \\ \log \cos 26^\circ 33' 54'' = \underline{1 \cdot 9515452} \\ \cdot 4030902 \end{array}$$ But diff. for 1 is 172; $$\therefore$$ proportional increase = $\frac{40}{172} = \frac{10}{43} = \cdot 23$. Thus the third side is 2.529823. The formula $c^2 = a^2 + b^2 - 2ab \cos C$ may also be adapted to logarithmic computation in two other ways by making use of the identities $\cos C = 2 \cos^2 \frac{C}{2} - 1$ and $\cos C = 1 - 2 \sin^2 \frac{C}{2}$. Let then We shall take the first of these cases, leaving the other as an exercise. $$c^{2} = a^{2} + b^{2} - 2ab \cos \ell'$$ $$= a^{2} + b^{2} - 2ab \left(2 \cos^{2} \frac{C}{2} - 1 \right)$$ $$= (a+b)^{2} - 4ab \cos^{2} \frac{\ell'}{2}$$ $$= (a+b)^{2} \left\{ 1 = \frac{4ab}{(a+b)^{2}} \cos^{2} \frac{C}{2} \right\}.$$ $$\frac{4ab}{(a+b)^{2}} \cos^{2} \frac{\ell'}{2} = \cos^{2} \theta.$$ $$c^{2} = (a+b)^{2} (1 - \cos^{2} \theta) = (a+b)^{2} \sin^{2} \theta;$$ $$\therefore c = (a+b) \sin \theta;$$ $$\therefore \log c = \log (a+b) + \log \sin \theta.$$ To determine θ we have the equation $$\cos\theta = \frac{2\sqrt{ab}}{a+b}\cos\frac{C}{2};$$ $$\therefore \ \log\cos\theta = \log 2 + \frac{1}{2}\left(\log\alpha + \log b\right) - \log\left(\alpha + b\right) + \log\cos\frac{C}{2}.$$ Since $2\sqrt{ab}$ is never greater than a+b and $\cos\frac{C}{2}$ is positive and less than unity, $\cos\theta$ is positive and less than unity, and thus θ is an acute angle. ## EXAMPLES. XVI. f. - 1. If a=8, b=7, c=9, find the angles; given $\log 2$, $\log 3$, $L \tan 24^{\circ}$ 5'=9'6502809, diff. for 60''=3390, $L \tan 36^{\circ}$ 41'=9'8721123, diff. for 60''=2637. - 2. The difference between the angles at the base of a triangle is 24°, and the sides opposite these angles are 175 and 337: find all the angles; given log 2, log 3, $$L \tan 12' = 9.3274745$$, $L \cot 56^{\circ} 6' 27'' = 9.8272293$. - 3. One of the sides of a right-angled triangle is two-sevenths of the hypotenuse; find the greater of the two acute angles; given $\log 2$, $\log 7$, $L\sin 14^{\circ} 11' = 9.455921$, $L\sin 14^{\circ} 12' = 9.456031$. - 4. Find the greatest side when two of the angles are 78'14' and 71° 24' and the side joining them is 2183; given $\log 2.183 = .3390537$, $\log 4.2274 = .6260733$, D = 103, $L \sin 78^{\circ} 14' = 9.9907766$, $L \sin 30^{\circ} 22' = 9.7037486$. 5. If b=2 ft. 6 in., c=2 ft., $A=22^{\circ}$ 20', find the other angles; and then shew that the side a is very approximately 1 foot. Given $\log 2$, $\log 3$, $L \cot 11^{\circ} 10' = 10.70465$, $L \sin 49^{\circ} 27' 34'' = 9.88079$, $L \sin 22^{\circ} 20' = 9.57977$, $L \tan 29^{\circ} 22' 26'' = 9.75041$. 6. If a = 1.56234, b = .43766, $\ell' = .58^{\circ} 42' 6''$, find A and B; given $\log .56234 = 4.75$, $\log \cot 29^{\circ} \ 21' = \cdot 250015$, $\log \cot 29^{\circ} \ 22' = \cdot 249715$. 7. If a=9, b=12, A=30, find the values of c, having given 8. The sides of a triangle are 9 and 3, and the difference of the angles opposite to them is 90°; find the angles; having given log 2. $L \tan 26^{\circ} 33' = 9.6986847$, $L \tan 26^{\circ} 34' = 9.6990006$. 9. Two sides of a triangle are 1404 and 960 respectively, and an angle opposite to one of them is 32°15′: find the angle contained by the two sides; having given log 2, log 3, 10. If b: c=11: 10 and $A=35^{\circ} 25'$, use the formula $\tan \frac{1}{2}(B-C') = \tan^2 \frac{\phi}{2} \cot \frac{A}{2}$ to find B and C'; given $\log 1.1 = .041393$, $L \tan 12^{\circ} 18' 36'' = .9.338891$, $L \cos 24 = .37' 12'' = .9.958607$, $L \cot 17' 42' 30'' = 10.495800$, $L \tan 8 = .28' .56'.5'' = .9.173582$. - 11. If $A = 50^{\circ}$, b = 1071, a = 873, find B; given $\log 1.071 = .029789$, $\log 8.73 = .941014$, $L \sin 50^{\circ} = 9.884254$, $L \sin 70^{\circ} = 9.972986$, $L \sin 70^{\circ} 1' =
9.973032$. - 12. If a=6, b=3, $C=36^{\circ}$ 52' 12", find c without determining A and B; given $\log 2=30103$, $\log 3=47712$, $\log 40249 = 4.60476$, $L \sin 18^{\circ} 26' 6'' = 9.5$, $L \cot 18^{\circ} 26' 6'' = 10.47712$. (In the following Examples the necessary Logarithms must be taken from the Tables.) - 13. Given a = 1000, b = 840, c = 1258, find B. - 14. Solve the triangle in which a=525, b=650, c=777. - 15. Find the least angle when the sides are proportional to 4, 5, and 6. - **16.** If $B=90^{\circ}$, AC=57.321, AB=28.58, find A and C. - 17. Find the hypotenuse of a right-angled triangle in which the smallest angle is 18° 37′ 29″ and the side opposite to it is 284 feet. - 18. The sides of a triangle are 9 and 7 and the angle between them is 60°: find the other angles. - 19. How long must a ladder be so that when inclined to the ground at an angle of 72° 15′ it may just reach a window 42°37 feet from the ground? - **20.** If a = 31.95, b = 21.96, $C = 35^{\circ}$, find A and B. - **21.** Find B, C, a when b = 25.12, c = 13.83, $A = 47^{\circ} 15'$. - 22. Find the greatest angle of the triangle whose sides are 1837.2, 2385.6, 2173.84. - **23.** When a = 21.352, b = 45.6843, c = 37.2134, find A, B, and C. - **24.** If $b = 647 \cdot 324$, $c = 850 \cdot 273$, $A = 103^{\circ} 12' 54''$, find the remaining parts. - 25. If $b=23\cdot2783$, $A=37^{\circ}$ 57', $B=43^{\circ}$ 13', find the remaining sides. - **26.** Find a and b when $B = 72^{\circ} 43' 25''$, $C = 47^{\circ} 12' 17''$, c = 2484'3. - **27**. If AB = 4517, AC = 150, $A = 31^{\circ} 30'$, find the remaining parts. - **28.** Find A, B, and b when a=324.68, e=421.73, $U=35^{\circ}17'12''$. - **29.** Given a = 321.7, c = 435.6, $A = 36^{\circ} 18' 27''$, find C. - 30. If b=1325, c=1665, $B=52^{\circ}$ 19', solve the obtuse-angled triangle to which the data belong. - 31. If a = 3795, $B = 73^{\circ} 15' 15''$, $e' = 42^{\circ} 18' 30''$, find the other sides. - 32. Find the angles of the two triangles which have b=17, c=12, and $C=43^{\circ}$ 12' 12". - 33. Two sides of a triangle are 2.7402 ft. and .7401 ft. respectively, and contain an angle 59° 27′ 5″; find the base and altitude of the triangle. - 34. The difference between the angles at the base of a triangle is 17° 48′ and the sides subtending these angles are 105·25 ft. and 76·75 ft.: find the angle included by the given sides. - 35. From the following data: - (1) $A = 43^{\circ} 15'$, AB = 36.5, BC = 20, - (2) $A = 43^{\circ} 15'$, AB = 36.5, BC = 30, - (3) $A = 43^{\circ} 15'$, AB = 36.5, BC = 45, point out which solution is impossible and which ambiguous. Find the third side for the triangle the solution of which is neither impossible nor ambiguous. **36.** In any triangle prove that $c = (a - b) \sec \theta$, where $$\tan\theta = \frac{2\sqrt{ab}}{a-b}\sin\frac{C}{2}.$$ If a = 17.32, b = 13.47, $\ell' = 47^{\circ} 13'$, find e without finding A and B. 37. If $\tan \phi = \frac{a+b}{a-b} \tan \frac{C}{2}$, prove that $c = (a-b) \cos \frac{C}{2} \sec \phi$. If a = 27.3, b = 16.8, $C = 45^{\circ} 12'$, find ϕ , and thence find c. 283 317 428 514 = 8 $231 = s - \alpha$ 197 = s - b 86 = s - c # Solution of Triangles with Four-Figure Logarithms. 197. To solve a triangle when the three sides are given. [For general explanation of method see Art. 187.] Example. If a=283, b=317, c=428, find all the angles. $$\tan \frac{A}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}} = \sqrt{\frac{197 \times 86}{514 \times 231}};$$ $$\therefore \log \tan \frac{A}{2} = \frac{1}{2} (\log 197 + \log 86 - \log 514 - \log 231).$$ $$233$$ $$231$$ $$248$$ $$2) 1028$$ $$231$$ $$233$$ $$231$$ $$248$$ $$2) 1028$$ $$231$$ $$231$$ $$231$$ $$231$$ From the Tables, log tan 20° 42′ = $\bar{1}$ ·5773; $\therefore \frac{A}{2}$ = 20° 42′, approx., and $A = 41^{\circ}24'$. $$\begin{array}{ll} {\rm Again,} & {\rm tan}\,\frac{B}{2} = \sqrt{\frac{(s-c)\,(s-a)}{s\,(s-b)}} = \sqrt{\frac{86\times231}{514\times197}};\\ & {\rm log}\,\,86 = 1\cdot9345 & {\rm log}\,\,514 = 2\cdot7110\\ & {\rm log}\,\,231 = 2\cdot3636 & {\rm log}\,\,197 = 2\cdot2945\\ & \frac{4\cdot2981}{5\cdot0055} & \frac{2\,)\,\,\overline{1}\cdot2926}\\ & {\rm log}\,\,{\rm tan}\,\,\frac{B}{2} = \overline{1}\cdot6463\\ & {\rm log}\,\,{\rm tan}\,\,23^\circ\,48' = \overline{1}\cdot6445\\ & {\rm liff.}\,\,{\rm for}\,\,5' = \frac{17}{12}\\ & \therefore\,\,\frac{B}{2} = 23^\circ\,53',\,{\rm approximately,\,\,and}\,\,B = 47^\circ\,46'. \end{array}$$ $A = 41^{\circ} 24', \quad B = 47^{\circ} 46', \quad C = 90^{\circ} 50'.$ Thus This solution may be compared with that of Ex. 2, Art. 188. [Examples XVI. g. Nos. 1—10 may be taken here.] Note. Any small error in obtaining the half angle is doubled when we multiply by 2. Thus a half angle obtained to the nearest minute will not necessarily give a final result to the same degree of accuracy. If greater accuracy is required we may proceed as follows: $$\log\tan\frac{A}{2} = \overline{1} \cdot 5772 \qquad \log\tan 20^{\circ} \cdot 42' = \overline{1} \cdot 5773$$ $$\log\tan 20^{\circ} \cdot 36' = \overline{1} \cdot 5750 \qquad \log\tan 20^{\circ} \cdot 36' = \overline{1} \cdot 5750$$ $$\dim 5. \qquad 22 \qquad \log\tan 20^{\circ} \cdot 36' = \overline{1} \cdot 5750$$ $$\dim 6. \qquad 23 \qquad 115$$ $$\frac{A}{2} \text{ is greater than } 20^{\circ} \cdot 36' \text{ by } \frac{22}{2\overline{3}} \times 6' \text{ or } 5' \cdot 7; \qquad 23) \frac{132}{115} \frac{570}{115}$$ $$\ldots \frac{A}{2} = 20^{\circ} \cdot 41' \cdot 7, \text{ and } A = 41^{\circ} \cdot 23'. \qquad 9$$ $197_{ m B}$. To solve a triangle having given two sides and the included angle. [For general explanation of method see Art. 189.] Example. If a = 681, c = 243, $B = 50^{\circ} 42'$, solve the triangle. $$\tan\frac{A-C}{2}\!=\!\frac{a-c}{a+c}\cot\frac{B}{2}\!=\!\frac{438}{924}\cot25^{\circ}\,21'\!=\!\frac{438}{924}\tan64^{\circ}\,39'\;;$$ $$\frac{2}{100} \frac{a+c}{2} = \log 438 - \log 924$$ $$\log \tan \frac{A-C}{2} = \log 438 - \log 924$$ $$\log \tan 64^{\circ} 39' = 3245$$ $$+\log \tan 64^{\circ} 39'$$; $\frac{2.9660}{\log 924 = 2.9657}$ $$\therefore \log \tan \frac{A - C}{2} = .0003; \qquad \log 924 = \frac{2.9657}{.0003}$$ $$\therefore \frac{A-C}{2} = 45^{\circ}1'.$$ Also $$\frac{A+C}{2} = 90 - \frac{B}{2} = 64^{\circ} 39'.$$ By addition $A = 109^{\circ} 40'$, and by subtraction $C = 19^{\circ} 38'$. Again, $$b = \frac{c \sin B}{\sin C} = \frac{243 \sin 50^{\circ} 42'}{\sin 19' 38'};$$ $\therefore \log b = \log 243 + \log \sin 50^{\circ} 42'$ $-\log \sin 19^{\circ} 38';$ $\therefore \log b = 2.7480;$ $b = 559.8$ whence Thus $A = 109^{\circ} 40'$, $C = 19^{\circ} 38'$, b = 559.8. This solution may be compared with that on p. 172. [Examples XVI. g. Nos. 11 20 may be taken here.] 197. To solve a triangle having given two angles and a side. [For general explanation of method see Art. 191.] Example. If b = 1000, $A = 45^{\circ}$, $C = 68^{\circ}$ 18', find the least side. $$B = 180^{\circ} - 45^{\circ} - 68^{\circ} 18' = 66^{\circ} 42';$$ $b \sin A = 1000 \sin 45'$ the least side = $$a = \frac{b \sin A}{\sin B} = \frac{1000 \sin 45}{\sin 66^{\circ} 42^{\circ}}$$. $$\log a = \log 1000 + \log \sin 45^{\circ}$$ - $\log \sin 66^{\circ} 42'$ = 2.8864: whence a = 769.8. $$\begin{array}{c} \log 1000 = 3 \\ \log \sin 45^{\circ} = \overline{1}.8495 \\ \hline 2.8495 \\ \log \sin 66^{\circ} 42' = \overline{1}.9631 \end{array}$$ 2.8864 [Examples XVI. g. Nos. 21—30 may be taken here.] 197D. To solve a triangle when two sides and the angle opposite to one of them are given. [For general explanation of method see Art. 192.] Example. If b = 63, c = 36, $C = 29^{\circ} 23'$, solve the triangle. $$\sin B = \frac{b}{c} \sin C = \frac{63}{36} \sin C$$ $$= \frac{7}{4} \sin 29^{\circ} 23'$$ $\log \sin B = 1.9338$; $\therefore B = 59^{\circ} 10'$. $$\log 7 = .8451$$ $$\log \sin 29^{\circ} 23' = \overline{1.6908}$$ $$.5359$$ $$\log 4 = .6021$$ $\bar{1} \cdot 9338$ Also since c < b, there is another value of B supplementary to the above, viz. 120° 50′. [See Art. 148.] Thus we may say $B_1 = 59^{\circ} \, 10'$, $B_2 = 120^{\circ} \, 50'$; $$\therefore A_1 = 180^{\circ} - 59^{\circ} 10' - 29^{\circ} 23' = 91^{\circ} 27',$$ $$A_2 = 180^{\circ} - 120^{\circ} 50' - 29^{\circ} 23' = 29^{\circ} 47'.$$ $$\begin{array}{l} \therefore \ a_1 \! = \! \frac{c \sin A_1}{\sin C} \! = \! \frac{36 \sin 91^\circ 27'}{\sin 29^\circ 23'} \\ = \! \frac{36 \sin 88^\circ 33'}{\sin 29^\circ 23'} \\ = 1 \! \cdot \! 8654. \\ \end{array} \quad \begin{array}{l} \log 36 \! = \! 1 \! \cdot \! 5563 \\ \log \sin 88^\circ 33' \! = \! 1 \! \cdot \! 9999 \\ \log \sin 29^\circ 23' \! = \! 1 \! \cdot \! 6908 \\ 1 \! \cdot \! 8654. \end{array}$$ $\therefore a_1 = 73.35$, from the Tables. Again $$a_2 = \frac{c \sin A_2}{\sin C}$$ $\log 36 = 1.5563$ $\log \sin 29^{\circ} 47' = \overline{1.6961}$ $1 \cdot 2524$ $\log \sin 29^{\circ} 23' = \overline{1.6908}$ $1 \cdot 5616$. \therefore $a_2 = 36.44$, from the Tables. Thus finally $$\begin{cases} B = 59^{\circ} 10', \text{ or } 120^{\circ} 50', \\ A = 91^{\circ} 27', \text{ or } 29^{\circ} 47', \\ a = 73.35, \text{ or } 36.44. \end{cases}$$ [Examples XVI. g. Nos. 31-37 may be taken here.] # EXAMPLES. XVI. g. (Given the three sides.) - 1. If a = 25.3, b = 11.7, c = 9.0, find A, using $\sin \frac{A}{2}$. - 2. If a = 68.75, b = 93.25, c = 63, find B, using $\cos \frac{B}{2}$. - 3. Find the smallest angle of a triangle whose sides are 11-24, 13-65, 9-03, using the sine formula. - 4. If $\alpha=15$, b=22, c=9, find all the angles. - 5. Find all the angles, given a = 31.54, b = 46.5, c = 63.4. - 6. Find all the angles, given a = 33.4, b = 71.6, c = 60.24. - 7. Find the largest angle of a triangle whose sides are 14.75, 6.84, 19.37, using the cosine formula. - 8. If the sides are 21.5, 13.7, 29.5, find the smallest angle, using the sine formula. - 9. If a:b:c=5:7:8, find all the angles. - 10. If the sides of a triangle are as 1·3:1·4:1·5,
find all the angles. (Given two sides and the included angle.) - 11. If b = 32.8, c = 15.0, $A = 107^{\circ} 26'$, find B and C. - 12. If a = 96.7, b = 135.4, $C = 123^{\circ} 42'$, find A and B. - 13. If a = 012, c = 576, $B = 60^{\circ} 30'$, find A and \bar{U} . - 14. Two sides of a triangle are 27.3 and 16.8, and they contain an angle of 45° 7′, find the remaining angles and side. - 15. Given $A = 37^{\circ}$, b = 82.9, c = 25.1, solve the triangle. - **16.** If b = 27.0, c = 33.48, $A = 60^{\circ}$, find the other angles. - 17. If 13a = 29b, and $C = 82^{\circ} 14'$, find A and B. - 18. If one side of a triangle is double another and makes with it an angle of 52° 47′, find the remaining angles. - 19. If 87b = 131c, and $A = 18^{\circ} 16'$, find B and C. - **20.** If a = 17.6, b = 24.03, $C = 121^{\circ} 38'$, solve the triangle. (Given two angles and a side.) - **21.** If $A = 40^{\circ}$, $C = 70^{\circ}$, b = 100, find a. - **22.** If $B = 42^{\circ}$, $C = 107^{\circ}$, a = 85.2, find b. - **23.** If $A = 49^{\circ} 11'$, $B = 21^{\circ} 15'$, c = 5.23, find a. - **24.** If $A = 65^{\circ} 27'$, $C = 71^{\circ} 35'$, b = 873, find c. - **25.** If $A = 60^{\circ}$, $B = 79^{\circ} 20'$, c = 60, find α . - 26. The base of a triangle is 3.57 inches, and the angles adjacent to it are 51°51′ and 87°43′, find the remaining sides. - **27.** Given $B = 65^{\circ} 47'$, $C = 52^{\circ} 39'$, $a = 125 \cdot 7$, find the greatest side, - 28. Solve the triangle when $A = 72^{\circ} 19'$, $B = 83^{\circ} 17'$, c = 92.93. - 29. In a triangle the side adjacent to two angles of 49°30′ and 70°30′ is 43 inches; find the other sides. - **30.** If B: C=4:7, C=7A, and b=89:36, find a and c (Given two sides and angle not included.) - 31. If a = 73, b = 62, $A = 82^{\circ} 14'$, find B. - **32.** If b = 41.62, c = 63.45, $B = 27^{\circ} 15'$, find C. - 33. If a = 17.28, b = 23.97, $B = 5^{\circ} 13'$, find A and c. - 34. If a = 94.2, b = 141.3, $A = 40^{\circ}$, solve the triangle. - 35. If $A = 20^{\circ} 41'$, b = 137, a = 115, solve the triangle. - 36. If b=1325, c=1665, $B=52^{\circ}19'$, solve the obtuse-angled triangle to which the data belong. - **37.** Find A, B, and b when a = 324.7, c = 421.7, $C = 35^{\circ}$. # (Miscellaneous.) - **38.** If a = 31.95, b = 21.96, $C = 35^{\circ}$, find A and B. - **39.** Given a = 1000, b = 840, c = 1258, find B, using $\sin \frac{B}{2}$. - **40.** Find the angles of the two triangles which have b=17, c=12, and $C=43^{\circ}12'$. - **41.** Solve the triangle in which a=525, b=650, c=777. - **42.** Find the least angle when the sides are proportional to 4, 5, and 6, using the sine formula. - **43.** Find B, C, and a, when $b=25\cdot12$, $c=13\cdot83$, $A=47^{\circ}15'$. - **44.** If AB=4517, AC=150, $A=31^{\circ}30'$, find the remaining parts. - **45.** Given a = 321.7, c = 435.6, $A = 36^{\circ} 18'$, find C. - **46.** In any triangle prove that $c = (a b) \sec \theta$, where $$\tan \theta = \frac{2\sqrt{ab}}{a-b}\sin \frac{C}{2}.$$ If a = 17.32, b = 13.47, $C = 47^{\circ} 12'$, find c without finding at and B. 47. If $\tan \phi = \frac{a+b}{a-b} \tan \frac{C}{2}$, prove that $c = (a-b) \cos \frac{C}{2} \sec \phi$. If a=27.3, b=16.8, $C=45^{\circ}12'$, find ϕ , and thence find c. ### CHAPTER XVII. #### HEIGHTS AND DISTANCES. 198. Some easy cases of heights and distances depending only on the solution of right-angled triangles have been already dealt with in Chap. VI. The problems in the present chapter are of a more general character, and require for their solution some geometrical skill as well as a ready use of trigonometrical formulæ. ## Measurements in one plane. 199. To find the height and distance of an inaccessible object on a horizontal plane. Let A be the position of the observer, CP the object; from P draw PC perpendicular to the horizontal plane; then it is required to find PC and AC. At A observe the angle of elevation PAC. Measure a base line AB in a direct line from A towards the object, and at B observe the angle of elevation PBC. Let $$\angle PAC=a$$, $\angle PBC=\beta$, $AB=a$. From $\triangle PBC$, $PC = PB \sin \beta$. From $\triangle PAB$, $$PB = \frac{AB\sin PAB}{\sin APB} = \frac{a\sin a}{\sin (\beta - a)};$$ $\therefore PC = a \sin a \sin \beta \csc (\beta - a).$ Also $AC = PC \cot a = a \cos a \sin \beta \csc (\beta - a)$. Each of the above expressions is adapted to logarithmic work; thus if PC=x, we have $\log x = \log a + \log \sin a + \log \sin \beta + \log \csc (\beta - a)$. Note. Unless the contrary is stated, it will be supposed that the observer's height is disregarded, and that the angles of elevation are measured from the ground. Example I. A person walking along a straight road observes that at two consecutive milestones the angles of elevation of a hill in front of him are 30° and 75°: find the height of the hill. In the adjoining figure, $\angle PAC = 30^{\circ}$, $\angle PBC = 75^{\circ}$, AB = 1 mile; $\angle APB = 75^{\circ} - 30^{\circ} = 45^{\circ}$. Let x be the height in yards; then $x = PB \sin 75^{\circ}$; but $PB = \frac{AB \sin PAB}{\sin APB} = \frac{1760 \sin 30^{\circ}}{\sin 45^{\circ}}$; $\therefore x = \frac{1760 \sin 30^{\circ} \sin 75^{\circ}}{\sin 45^{\circ}}$ $= 1760 \times \frac{1}{2} \times \sqrt{2} \times \frac{\sqrt{3} + 1}{2\sqrt{2}}$ $= 440 (\sqrt{3} + 1)$. If we take $\sqrt{3}=1.732$ and reduce to feet, we find that the height is 3606.24 ft. # EXAMPLES. XVII. a. - 1. From the top of a cliff 200 ft. above the sea-level the angles of depression of two boats in the same vertical plane as the observer are 45° and 30°: find their distance apart. - 2. A person observes the elevation of a mountain top to be 15°, and after walking a mile directly towards it on level ground the elevation is 75°: find the height of the mountain in feet. - 3. From a ship at sea the angle subtended by two forts A and B is 30°. The ship sails 4 miles towards A and the angle is then 48°: prove that the distance of B at the second observation is 6.472 miles. - 4. From the top of a tower hft, high the angles of depression of two objects on the horizontal plane and in a line passing through the foot of the tower are $45^{\circ} A$ and $45^{\circ} + A$. Show that the distance between them is $2h \tan 2A$. - 5. An observer finds that the angular elevation of a tower is A. On advancing a feet towards the tower the elevation is 45° and on advancing b feet nearer the elevation is $90^{\circ} A$: find the height of the tower. - 6. A person observes that two objects A and B bear due N. and N. 30° W. respectively. On walking a mile in the direction N.W. he finds that the bearings of A and B are N.E. and due E. respectively: find the distance between A and B. - 7. A tower stands at the foot of a hill whose inclination to the horizon is 9°; from a point 40 ft. up the hill the tower subtends an angle of 54°; find its height. - 8. At a point on a level plane a tower subtends an angle a and a flagstaff c ft. in length at the top of the tower subtends an angle β : shew that the height of the tower is $$c \sin a \csc \beta \cos (a+\beta)$$. Example II. The upper three-fourths of a ship's mast subtends at a point on the deck an angle whose tangent is '6; find the tangent of the angle subtended by the whole mast at the same point. Let C be the point of observation, and let APB be the mast, AP being the lower fourth of it. Let AB=4a, so that AP=a; also let AC=b, $\angle ACB=\theta$, $\angle BCP=\beta$, so that $\tan \beta = \cdot 6$. From $$\triangle PCA$$, $\tan (\theta - \beta) = \frac{a}{b}$; from $\triangle BCA$, $\tan \theta = \frac{4a}{b}$; $$\therefore \tan \theta = 4 \tan (\theta - \beta) - \frac{4 (\tan \theta - \tan \beta)}{1 + \tan \theta \tan \beta};$$ $$\therefore \tan \theta = \frac{4\left(\tan \theta - \frac{3}{5}\right)}{1 + \frac{3}{5}\tan \theta} = \frac{4\left(5\tan \theta - 3\right)}{5 + 3\tan \theta}.$$ On reduction, $$\tan^2 \theta - 5 \tan \theta + 4 = 0$$; whence $\tan \theta = 1$ or 4. Note. The student should observe that in examples of this class we make use of right-angled triangles in which the horizontal base line forms one side. **Example III.** A tower BCD surmounted by a spire DE stands on a horizontal plane. From the extremity A of a horizontal line BA, it is found that BC and DE subtend equal angles. If BC = 9 ft., CD = 72 ft., and DE = 36 ft., find BA. Let $$\angle BAC = \angle DAE = \theta,$$ $\angle DAB = \alpha, AB = x \text{ ft.}$ Now $$BC = 9$$ ft., $BD = 81$ ft., $BE = 117$ ft. $$\therefore \tan (\alpha + \theta) = \frac{BE}{AB} = \frac{117}{x};$$ $$\tan \alpha = \frac{BD}{AB} = \frac{81}{x};$$ $$\tan \theta = \frac{BC}{AB} = \frac{9}{x}.$$ But $$\tan (\alpha + \theta) = \frac{\tan \alpha + \tan \theta}{1 - \tan \alpha \tan \theta};$$ $$\therefore \frac{117}{x} = \frac{\frac{81}{x} + \frac{9}{x}}{1 - \frac{81}{x} \cdot \frac{9}{x}} = \frac{90}{x} \cdot \frac{x^2}{x^2 - 81 \times 9}.$$ $$117x^2 - 81 \times 9 \times 117 = 90x^2;$$ $$\therefore 27x^2 = 81 \times 9 \times 117;$$ $$\therefore x^2 = 81 \times 39;$$ $$\therefore x = 9\sqrt{39}.$$ But $\sqrt{39} = 6.245$ nearly; $\therefore x = 56.205$ nearly. Thus AB = 56.2 ft. nearly. - 9. A flagstaff 20 ft. long standing on a wall 10 ft. high subtends an angle whose tangent is 5 at a point on the ground; find the tangent of the angle subtended by the wall at this point. - 10. A statue standing on the top of a pillar 25 feet high subtends an angle whose tangent is 125 at a point 60 feet from the foot of the pillar: find the height of the statue. - 11. A tower BCD surmounted by a spire DE stands on a horizontal plane. From the extremity A of a horizontal line BA it is found that BC and DE subtend equal angles. - If BC=9 ft., CD=280 ft., and DE=35 ft., prove that BA=180 ft. nearly. - 12. On the bank of a river there is a column 192 ft. high supporting a statue 24 ft. high. At a
point on the opposite bank directly facing the column the statue subtends the same angle as a man 6 ft. high standing at the base of the column: find the breadth of the river. - 13. A monument ABCDE stands on level ground. At a point P on the ground the portions AB, AC, AD subtend angles a, β , γ respectively. Supposing that AB=a, AC=b, AD=c, AP=x, and $a+\beta+\gamma=180^\circ$, shew that (a+b+c) $x^2=abc$. **Example IV.** The altitude of a rock is observed to be 47° ; after walking 1000 ft. towards it up a slope inclined at 32° to the horizon the altitude is 77° . Find the vertical height of the rock above the first point of observation, given $\sin 47^{\circ} = 731$. Let P be the top of the rock, A and B the points of observation; then in the figure $\angle PAC=47^{\circ}$, $\angle BAC=32^{\circ}$, $$\angle PDC = \angle PBE = 77^{\circ}, AB = 1000 \text{ ft.}$$ Let x ft. be the height; then $$x = PA \sin PAC = PA \sin 47^{\circ}$$. We have therefore to find PA in terms of AB. of $$AB$$. In $\triangle PAB$, $\angle PAB = 47^{\circ} - 32^{\circ} = 15^{\circ}$; $\angle APB = 77^{\circ} - 47^{\circ} = 30^{\circ}$; $\therefore \angle ABP = 135^{\circ}$; $\therefore PA = \frac{AB \sin ABP}{\sin APB}$ $$= \frac{1000 \sin 135^{\circ}}{\sin 30^{\circ}}$$ $$= 1000 \sqrt{2};$$ $$\therefore x = PA \sin 47^{\circ} = 1000 \sqrt{2 \times 731}$$ $$= 731 \sqrt{2}.$$ If we take $\sqrt{2}=1.414$, we find that the height is 1034 ft. nearly. 14. From a point on the horizontal plane, the elevation of the top of a hill is 45°. After walking 500 yards towards its summit up a slope inclined at an angle of 15° to the horizon the elevation is 75°: find the height of the hill in feet. - 15. From a station B at the base of a mountain its summit A is seen at an elevation of 60° ; after walking one mile towards the summit up a plane making an angle of 30° with the horizon to another station C, the angle BCA is observed to be 135° : find the height of the mountain in feet. - 16. The elevation of the summit of a hill from a station A is a. After walking c feet towards the summit up a slope inclined at an angle β to the horizon the elevation is γ : shew that the height of the hill is $c \sin a \sin (\gamma \beta) \csc (\gamma a)$ feet. - 17. From a point A an observer finds that the elevation of Ben Nevis is 60°; he then walks 800 ft. on a level plane towards the foot, and then 800 ft. further up a slope of 30° and finds the elevation to be 75°: shew that the height of Ben Nevis above A is 4478 ft. approximately. - 200. In many of the problems which follow, the solution depends upon the knowledge of some geometrical proposition. Example I. A tower stands on a horizontal plane. From a mound 14 ft. above the plane and at a horizontal distance of 48 ft. from the tower an observer notices a loophole, and finds that the portions of the tower above and below the loophole subtend equal angles. If the height of the loophole is 30 ft., find the height of the tower. Let AB be the tower, C the point of observation, L the loophole. Draw CD vertical and CE horizontal. Let AB = x. We have $$CD = 14$$, $AD = EC = 48$, $BE = x - 14$. From $\triangle ADC$, $AC^2 = (14)^2 + (48)^2 = 2500$; $\therefore AC = 50$. From $$\triangle CEB$$, $CB^2 = (x - 14)^2 + (48)^2$ = $x^2 - 28x + 2500$. Now $$\angle BCL = \angle ACL$$; hence by Euc. vi. 3, $$\frac{BC}{AC} = \frac{BL}{AL}$$; $$\therefore \frac{\sqrt{x^2 - 28x + 2500}}{50} = \frac{x - 30}{30},$$ By squaring, $9(x^2 - 28x + 2500) = 25(x^2 - 60x + 900)$. On reduction, we obtain $16x^2 - 1248x = 0$; whence x = 78. Thus the tower is 78 ft. high. ### EXAMPLES. XVII. b. - 1. At one side of a road is a flagstaff 25 ft. high fixed on the top of a wall 15 ft. high. On the other side of the road, at a point on the ground directly opposite, the flagstaff and wall subtend equal angles: find the width of the road. - 2. A statue a feet high stands on a column 3a feet high. To an observer on a level with the top of the statue, the column and statue subtend equal angles: find the distance of the observer from the top of the statue. - 3. A flagstaff a feet high placed on the top of a tower b feet high subtends the same angle as the tower to an observer h feet high standing on the horizontal plane at a distance d feet from the foot of the tower; shew that $$(a-b) d^2 = (a+b) b^2 - 2b^2h - (a-b) h^2$$. Example II. A flagstaff is fixed on the top of a wall standing upon a horizontal plane. An observer finds that the angles subtended at a point on this plane by the wall and the flagstaff are α and β . He then walks a distance c directly towards the wall and finds that the flagstaff again subtends an angle β . Find the heights of the wall and flagstaff. Let ED be the wall, DC the flagstaff, A and B the points of observation. Then $\angle CAD = \beta = \angle CBD$, so that the four points C, A, B, D are concyclic. .. $$\angle ABD = \text{supp}^{t}$$, of $\angle ACE = 90^{\circ} + (\alpha + \beta)$, from $\triangle CAE$. Hence in $\triangle ADB$, $$\angle ADB = 180^{\circ} - \alpha - \{90^{\circ} + (\alpha + \beta)\}$$ = $90^{\circ} - (2\alpha + \beta)$. $$\therefore AD = \frac{AB\sin ABD}{\sin ADB} = \frac{c\cos(\alpha + \beta)}{\cos(2\alpha + \beta)}.$$ Hence in $\triangle ADE$, $$DE = AD \sin \alpha = \frac{c \sin \alpha \cos (\alpha + \beta)}{\cos (2\alpha + \beta)}.$$ And in $\triangle CAD$, $$CD = \frac{AD\sin CAD}{\sin ACD} = \frac{AD\sin \beta}{\cos (\alpha + \beta)} = \frac{c\sin \beta}{\cos (2\alpha + \beta)}.$$ Example III. A man walking towards a tower AB on which a flagstaff BC is fixed observes that when he is at a point E, distant c ft. from the tower, the flagstaff subtends its greatest angle. If $\angle BEC = a$, prove that the heights of the tower and flagstaff are c tan $\left(\frac{\pi}{4} - \frac{a}{2}\right)$ and 2c tan a ft. respectively. Since E is the point in the horizontal line AE at which BC subtends a maximum angle, it can easily be proved that AE touches the circle passing round the triangle CBE. [See Hall and Stevens' Geometry, p. 315.] The centre D of this circle lies in the vertical line through E. Draw DF perpendicular to BC, then DF bisects BC and also $\angle CDB$. By Euc. 111. 20, $$\angle CDB = 2 \angle CEB = 2\alpha;$$ $\therefore \angle CDF = \angle BDF = \alpha.$ $\therefore CB = 2CF = 2DF \tan \alpha = 2c \tan \alpha.$ Again, ∠ $$AEB = ∠ ECB$$ in alternate segment $$= \frac{1}{2} ∠ EDB \text{ at centre}$$ $$= \frac{1}{2} \left(\frac{\pi}{2} - \alpha \right).$$ ∴ $AB = c \tan AEB = c \tan \left(\frac{\pi}{4} - \frac{\alpha}{2} \right).$ - 4. A tower standing on a cliff subtends an angle β at each of two stations in the same horizontal line passing through the base of the cliff and at distances of a feet and b feet from the cliff. Prove that the height of the tower is $(a+b) \tan \beta$ feet. - 5. A column placed on a pedestal 20 feet high subtends an angle of 45° at a point on the ground, and it also subtends an angle of 45° at a point which is 20 feet nearer the pedestal: find the height of the column. - 6. A flagstaff on a tower subtends the same angle at each of two places A and B on the ground. The elevations of the top of the flagstaff as seen from A and B are a and β respectively. If AB=a, shew that the length of the flagstaff is $$a \sin(a+\beta-90^\circ) \csc(a-\beta)$$. - 7. A pillar stands on a pedestal. At a distance of 60 feet from the base of the pedestal the pillar subtends its greatest angle 30° : shew that the length of the pillar is $40\sqrt{3}$ feet, and that the pedestal also subtends 30° at the point of observation. - 8. A person walking along a canal observes that two objects are in the same line which is inclined at an angle a to the canal. He walks a distance c further and observes that the objects subtend their greatest angle β : shew that their distance apart is $$2c\sin a\sin \beta/(\cos a+\cos \beta)$$. - 9. A tower with a flagstaff stands on a horizontal plane. Shew that the distances from the base at which the flagstaff subtends the same angle and that at which it subtends the greatest possible angle are in geometrical progression. - 10. The line joining two stations A and B subtends equal angles at two other stations C and D: prove that $$AB \sin CBD = CD \sin ADB$$. 11. Two straight lines ABC, DEC meet at C. If ABE = ABE = A, and ABE = shew that $$BC = \frac{AB\sin\beta\sin\left(a+\beta\right)}{\sin\left(\gamma-\beta\right)\sin\left(a+\beta+\gamma\right)}.$$ - 12. Two objects P and Q subtend an angle of 30° at A. Lengths of 20 feet and 10 feet are measured from A at right angles to AP and AQ respectively to points R and S at each of which PQ subtends angles of 30° : find the length of PQ. - 13. A ship sailing N.E. is in a line with two beacons which are 5 miles apart, and of which one is due N. of the other. In 3 minutes and also in 21 minutes the beacons are found to subtend a right angle at the ship. Prove that the ship is sailing at the rate of 10 miles an hour, and that the beacons subtend their greatest angle at the ship at the end of $3\sqrt{7}$ minutes. - 14. A flagstaff stands on the top of a tower. A man walking along a straight road towards the tower observes that the angle of elevation of the top of the flagstaff is β ; after walking a distance a further along the road he notices that the flagstaff subtends its maximum angle a; shew that the height of the flagstaff is $$\frac{2a\sin a\sin \beta}{\cos \beta + \sin (a - \beta)}$$ # Measurements in more than one plane. 201. In Art. 199 the base line AB was measured directly towards the object. If this is not possible we may proceed as follows. From A measure a base line AB in any convenient direction in the horizontal plane. At A observe the two angles PAB and PAC; and at B observe the angle PBA. Let $$\angle PAB =
a$$, $\angle PAC = \beta$, $\angle PBA = \gamma$, $AB = a$, $PC = x$. From $\triangle PAC$, $x = PA \sin \beta.$ From $\triangle PAB$, $$PA = \frac{AB \sin PBA}{\sin APB} = \frac{a \sin \gamma}{\sin (a+\gamma)};$$ $$\therefore x = a \sin \beta \sin \gamma \csc (a+\gamma).$$ 202. To shew how to find the distance between two inaccessible objects. Let P and Q be the objects. Take any two convenient stations A and B in the same horizontal plane, and measure the distance between them. At A observe the angles PAQ and QAB. Also if AP, AQ, AB are not in the same plane, measure the angle PAB. At B observe the angles ABP and ABQ. In $\triangle QAB$, we know $\triangle QAB$, $\triangle QBA$, and AB: so that AQ may be found. In $\triangle PAQ$, we know AP, \overline{AQ} , and $\angle PAQ$; so that PQ may be found. Example 1. The angular elevation of a tower CD at a place A due South of it is 30°, and at a place B due West of A the elevation is 18°. If AB = a, shew that the height of the tower is $\frac{a}{\sqrt{2+2\sqrt{5}}}$. Let CD = x. From the right-angled triangle DCA, $AC = x \cot 30^{\circ}$. From the right-angled triangle DCB, $BC = x \cot 18^{\circ}$. But $\angle BAC$ is a right angle, $$\begin{array}{c} \therefore \ BC^2 - AC^2 = a^2; \\ \therefore \ x^2 \left(\cot^2 18^\circ - \cot^2 30^\circ\right) = a^2; \\ \therefore \ x^2 \left(\csc^2 18^\circ - \csc^2 30^\circ\right) = a^2; \\ \therefore \ x^2 \left\{ \left(\frac{4}{\sqrt{5-1}}\right)^2 - 4 \right\} = a^2; \\ \therefore \ x^2 \left\{ \left(\sqrt{5+1}\right)^2 - 4 \right\} = a^2; \\ \therefore \ x^2 \left\{ 2 + 2\sqrt{5} = a^2, \right. \end{array}$$ which gives the height required. Example 2. A hill of inclination 1 in 5 faces South. Shew that a road on it which takes a N.E. direction has an inclination 1 in 7. Let AD running East and West be the ridge of the hill, and let ABFD be a vertical plane through AD. Let C be a point at the foot of the hill, and ABC a section made by a vertical plane running North and South. Draw CG in a N.E. direction in the horizontal plane and let it meet BF in G; draw GH parallel to BA; then if CH is joined it will represent the direction of the road. Since the inclination of CA is 1 in 5, we may take AB=a, and AC=5a, so that $BC^2=24a^2$. Since CBG is a right-angled isosceles triangle, $$CG^2 = 2CB^2 = 48a^2$$. Hence in the right-angled triangle CGH, $$CH^2 = 48a^2 + a^2 = 49a^2$$; $$\therefore CH = 7a = 7GH.$$ Thus the slope of the road is 1 in 7. # EXAMPLES. XVII. c. - 1. The elevation of a hill at a place P due East of it is 45° , and at a place Q due South of P the elevation is 30° . If the distance from P to Q is 500 yards, find the height of the hill in feet. - 2. The elevation of a spire at a point A due West of it is 60°, and at point B due South of A the elevation is 30°. If the spire is 250 feet high, find the distance between A and B. - 3. A river flows due North, and a tower stands on its left bank. From a point A up-stream and on the same bank as the tower the elevation of the tower is 60° , and from a point B just opposite on the other bank the elevation is 45° . If the tower is 360 feet high, find the breadth of the river. - **4.** The elevation of a steeple at a place A due S. of it is 45° , and at a place B due W. of A the elevation is 15° . If AB = 2a, shew that the height of the steeple is $a(3^{\frac{1}{4}} 3^{-\frac{1}{4}})$. - 5. A person due S. of a lighthouse observes that his shadow cast by the light at the top is 24 feet long. On walking 100 yards due E. he finds his shadow to be 30 feet long. Supposing him to be 6 feet high, find the height of the light from the ground. - 6. The angles of elevation of a balloon from two stations a mile apart and from a point halfway between them are observed to be 60°, 30°, and 45° respectively. Prove that the height of the balloon is $440\sqrt{6}$ yards. [If AD is a median of the triangle ABC, then $2AD^2 + 2BD^2 = AB^2 + AC^2$. 7. At each end of a base of length 2a, the angular elevation of a mountain is θ , and at the middle point of the base the elevation is ϕ . Prove that the height of the mountain is $$a \sin \theta \sin \phi \sqrt{\csc(\phi + \theta) \csc(\phi - \theta)}$$. 8. Two vertical poles, whose heights are g and b, subtend the same angle a at a point in the line joining their feet. If they subtend angles β and γ at any point in the horizontal plane at which the line joining their feet subtends a right angle, prove that $(a+b)^2 \cot^2 a = a^2 \cot^2 \beta + b^2 \cot^2 \gamma.$ 9. From the top of a hill a person finds that the angles of depression of three consecutive milestones on a straight level road are a, β, γ . Shew that the height of the hill is $$5280\sqrt{2}/\sqrt{\cot^2\alpha-2\cot^2\beta+\cot^2\gamma}$$ feet. - 10. Two chimneys AB and CD are of equal height. A person standing between them in the line AC joining their bases observes the elevation of the one nearer to him to be 60° . After walking 80 feet in a direction at right angles to AC he observes their elevations to be 45° and 30° : find their height and distance apart. - 11. Two persons who are 500 yards apart observe the bearing and angular elevation of a balloon at the same instant. One finds the elevation 60° and the bearing S.W., the other finds the elevation 45° and the bearing W. Find the height of the balloon. - 12. The side of a hill faces due S, and is inclined to the horizon at an angle a. A straight railway upon it is inclined at an angle β to the horizon; if the bearing of the railway be x degrees E, of N, shew that $\cos x = \cot a \tan \beta$. ### EXAMPLES. XVII. d. [In the following examples the logarithms are to be taken from Four-Figure Tables.] - 1. A man in a balloon observes that two churches which he knows to be one mile apart subtend an angle of 11°24′ when he is exactly over the middle point between them: find the height of the balloon in miles. - 2. There are three points A, B, C in a straight line on a level piece of ground. A vertical pole erected at C has an elevation of 5° 30′ from A and 10° 45′ from B. If AB is 100 yards, find the height of the pole and the distance BC. - 3. The angular altitude of a lighthouse seen from a point on the shore is 12° 32′, and from a point 500 feet nearer the altitude is 26° 34′: find its height above the sea-level. - 4. From a boat the angles of elevation of the highest and lowest points of a flagstaff 30 ft. high on the edge of a cliff are 46° 14′ and 44° 8′: find the height and distance of the cliff. - 5. From the top of a hill the angles of depression of two successive milestones on level ground, and in the same vertical plane as the observer, are 5° and 10°. Find the height of the hill in feet and the distance of the nearer milestone in miles. - 6. An observer whose eye is 15 feet above the roadway finds that the angle of elevation of the top of a telegraph post is 17° 19′, and that the angle of depression of the foot of the post is 8° 36′: find the height of the post and its distance from the observer. - 7. Two straight railroads are inclined at an angle of 20° 16′. At the same instant two engines start from the point of intersection, one along each line; one travels at the rate of 20 miles an hour: at what rate must the other travel so that after 3 hours the distance between them shall be 30 miles? - 8. An observer finds that from the doorstep of his house the elevation of the top of a spire is 5a, and that from the roof above the doorstep it is 4a. If k be the height of the roof above the doorstep, prove that the height of the spire above the doorstep and the horizontal distance of the spire from the house are respectively $h \operatorname{cosec} a \cos 4a \sin 5a$ and $h \operatorname{cosec} a \cos 4a \cos 5a$. If h=39 feet, and $a=7^{\circ}19'$, calculate the height and the distance. ## CHAPTER XVIII. ### PROPERTIES OF TRIANGLES AND POLYGONS. 203. To find the area of a triangle. Let Δ denote the area of the triangle ABC. Draw AD perpendicular to BC. By Euc. I. 41, the area of a triangle is half the area of a rectangle on the same base and of the same altitude. $$\therefore \Delta = \frac{1}{2} \text{ (base × altitude)}$$ $$= \frac{1}{2} BC \cdot AD = \frac{1}{2} BC \cdot AB \sin B$$ $$= \frac{1}{2} ca \sin B.$$ Similarly, it may be proved that $$\Delta = \frac{1}{2}ab \sin C$$, and $\Delta = \frac{1}{2}bc \sin A$. These three expressions for the area are comprised in the single statement $$\Delta = \frac{1}{2} (product \ of \ two \ sides) \times (sine \ of \ included \ angle).$$ Again, $$\Delta = \frac{1}{2} bc \sin A = bc \sin \frac{A}{2} \cos \frac{A}{2}$$ $$= bc \sqrt{\frac{(s-b)(s-c)}{bc}} \sqrt{\frac{s(s-a)}{bc}}$$ $$= \sqrt{s(s-a)(s-b)(s-c)},$$ which gives the area in terms of the sides. Again, $$\Delta = \frac{1}{2}bc \sin A = \frac{1}{2}\sin A$$. $\frac{a \sin B}{\sin A}$. $\frac{a \sin C}{\sin A}$ $$= \frac{a^2 \sin B \sin C}{2 \sin A}$$ $$= \frac{a^2 \sin B \sin C}{2 \sin (B+C)},$$ which gives the area in terms of one side and the functions of the adjacent angles. Note. Many writers use the symbol S for the area of a triangle, but to avoid confusion between S and s in manuscript work the symbol Δ is preferable. Example 1. The sides of a triangle are 17, 25, 28: find the lengths of the perpendiculars from the angles upon the opposite sides. From the formula $$\Delta = \frac{1}{2}$$ (base × altitude), it is evident that the three perpendiculars are found by dividing 2Δ by the three sides in turn. Now $$\Delta = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{35 \times 18 \times 10 \times 7}$$ = $5 \times 7 \times 6 = 210$. Thus the perpendiculars are $\frac{420}{17}$, $\frac{420}{25}$, $\frac{420}{28}$, or $\frac{420}{17}$, $\frac{84}{5}$, 15. Example 2. Two angles of a triangular field are 22.5° and 45°, and the length of the side opposite to the
latter is one furlong: find the area. Let $$A = 22\frac{1}{2}^{\circ}$$, $B = 45^{\circ}$, then $b = 220$ yds., and $C = 112\frac{1}{2}^{\circ}$. From the formula $$\Delta$$: $$\Delta = \frac{b^2 \sin A \sin C}{2 \sin B},$$ the area in sq. yds. = $$\frac{220 \times 220 \times \sin 22\frac{1}{2}^{\circ} \times \sin 112\frac{1}{2}^{\circ}}{2 \sin 45^{\circ}}$$ $$= \frac{220 \times 220 \times \sin 22\frac{1}{2}^{\circ} \times \cos 22\frac{1}{2}^{\circ}}{2 \times 2 \sin 22\frac{1}{2}^{\circ} \cos 22\frac{1}{2}^{\circ}}$$ $$=110 \times 110.$$ Expressed in acres, the area = $\frac{110 \times 110}{4840} = 2\frac{1}{2}$. D 204. To find the radius of the circle circumscribing a triangle. Let S be the centre of the circle circumscribing the triangle ABC, and R its radius. Bisect $\angle BSC$ by SD, which will also bisect BC at right angles. Now by Euc. 111. 20, ∠ BSC at centre =twice $$\angle BAC$$ = $2A$: and $$\frac{a}{2} = BD = BS \sin BSD = R \sin A;$$ $$\therefore R = \frac{a}{2\sin A}.$$ Thus $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R,$$ $$a = 2R \sin A, \quad b = 2R \sin B, \quad c = 2R \sin C.$$ 01 Example. Show that $2R^2 \sin A \sin B \sin C = \Delta$. The first side $$=\frac{1}{2}$$, $2R \sin A$, $2R \sin B$, $\sin C$ $=\frac{1}{2}ab \sin C$ $=\Delta$ 205. From the result of the last article we deduce the following important theorem: If a chord of length 1 subtend an angle θ at the circumference of a circle whose radius is R, then $1 = 2R \sin \theta$. 206. For shortness, the circle circumscribing a triangle may be called the *Circum-circle*, its centre the *Circum-centre*, and its radius the *Circum-radius*. The circum-radius may be expressed in a form not involving the angles, for $$R = \frac{a}{2\sin A} = \frac{abc}{2bc\sin A} = \frac{abc}{4\Delta}.$$ 207. To find the radius of the circle inscribed in a triangle. Let *I* be the centre of the circle inscribed in the triangle *ABC*, and *D*, *E*, *F* the points of contact; then *ID*, *IE*, *IF* are perpendicular to the sides. Now Δ =sum of the areas of the triangles BIC, CIA, AIB $$= \frac{1}{2} ar + \frac{1}{2} br + \frac{1}{2} cr = \frac{1}{2} (a + b + c) r$$ =sr; whence $$r = \frac{\Delta}{s}$$. 208. To express the radius of the inscribed circle in terms of one side and the functions of the half-angles. In the figure of the previous article, we know from Euc. IV. 4 that I is the point of intersection of the lines bisecting the angles, so that $$\angle IBD = \frac{B}{2}, \quad \angle ICD = \frac{C}{2}.$$ $$\therefore BD = r \cot \frac{B}{2}, \quad CD = r \cot \frac{C}{2}.$$ $$\therefore r \left(\cot \frac{B}{2} + \cot \frac{C}{2}\right) = a;$$ $$\therefore r \sin \frac{B + C}{2} = a \sin \frac{B}{2} \sin \frac{C}{2};$$ $$\therefore r = \frac{a \sin \frac{B}{2} \sin \frac{C}{2}}{\cos \frac{A}{2}}.$$ 209. Definition. A circle which touches one side of a triangle and the other two sides produced is said to be an escribed circle of the triangle. Thus the triangle ABC has three escribed circles, one touching BC, and AB, AC produced; a second touching CA, and BC, BA produced; a third touching AB, and CA, CB produced. We shall assume that the student is familiar with the construction of the escribed circles. [See Hall and Stevens' Geometry, p. 195.] For shortness, we shall call the circle inscribed in a triangle the *In-circle*, its centre the *In-centre*, and its radius the *In-radius*; and similarly the escribed circles may be called the *Ex-circles*, their centres the *Ex-centres*, and their radii the *Ex-radii*. # 210. To find the radius of an escribed circle of a triangle. Let I_1 be the centre of the circle touching the side BC and the two sides AB and AC produced. Let D_1 , E_1 , F_1 be the points of contact; then the lines joining I_1 to these points are perpendicular to the sides. Let t_1 be the radius; then $\Delta = \text{area } ABC$ $= \text{area } ABI_1C - \text{area } BI_1C$ $= \text{area } BI_1A + \text{area } CI_1A$ $- \text{area } BI_1C$ $= \frac{1}{2}cr_1 + \frac{1}{2}br_1 - \frac{1}{2}ar_1$ $= \frac{1}{2}(c + b - a)r_1$ $= (s - a)r_1;$ $\therefore r_1 = \frac{\Delta}{s-a}$ Similarly, if r_2 , r_3 be the radii of the escribed circles opposite to the angles B and C respectively, $$r_2\!=\!\frac{\Delta}{s-b}, \qquad r_3\!=\!\frac{\Delta}{s-c}.$$ 211. To find the radii of the escribed circles in terms of one side and the functions of the half-angles. In the figure of the last article, I_1 is the point of intersection of the lines bisecting the angles B and C externally; so that $$\angle I_1 B D_1 = 90^\circ - \frac{B}{2}, \qquad \angle I_1 C D_1 = 90^\circ - \frac{C}{2}.$$ $$\therefore B D_1 = r_1 \cot \left(90^\circ - \frac{B}{2}\right) = r_1 \tan \frac{B}{2},$$ $$C D_1 = r_1 \cot \left(90^\circ - \frac{C}{2}\right) = r_1 \tan \frac{C}{2};$$ $$\therefore r_1 \left(\tan \frac{B}{2} + \tan \frac{C}{2}\right) = a;$$ $$\therefore r_1 \sin \frac{B + C}{2} = a \cos \frac{B}{2} \cos \frac{C}{2};$$ $$\therefore r_1 = \frac{a \cos \frac{B}{2} \cos \frac{C}{2}}{\cos \frac{A}{2}}.$$ Similarly, $$r_{2} = \frac{b \cos \frac{C}{2} \cos \frac{A}{2}}{\cos \frac{B}{2}}, \quad r_{3} = \frac{c \cos \frac{A}{2} \cos \frac{B}{2}}{\cos \frac{C}{2}}.$$ 212. By substituting $$a=2R\sin A$$, $b=2R\sin B$, $c=2R\sin C$, in the formulæ of Art. 208 and Art. 211, we have $$r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2},$$ $$r_1 = 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2},$$ $$r_2 = 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2},$$ $$r_3 = 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2}.$$ 0 Example 1. Shew that $$\frac{r_1-r}{a} + \frac{r_2-r}{b} = \frac{c}{r_3}.$$ The first side $$= \frac{1}{a} \left(\frac{\Delta}{s-a} - \frac{\Delta}{s} \right) + \frac{1}{b} \left(\frac{\Delta}{s-b} - \frac{\Delta}{s} \right)$$ $$= \frac{\Delta}{s (s-a)} + \frac{\Delta}{s (s-b)} = \frac{\Delta (2s-a-b)}{s (s-a)(s-b)}$$ $$= \frac{\Delta c}{s (s-a) (s-b)} = \frac{\Delta c (s-c)}{s (s-a) (s-b) (s-c)}$$ $$= \frac{\Delta c (s-c)}{\Delta^2} = \frac{c (s-c)}{\Delta}$$ $$= \frac{c}{r_s}.$$ Example 2. If $r_1 = r_2 + r_3 + r$, prove that the triangle is right-angled. By transposition, $$r_1 - r = r_2 + r_3;$$ $$\therefore 4R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} - 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}$$ $$= 4R \cos \frac{A}{2} \sin \frac{B}{2} \cos \frac{C}{2} + 4R \cos \frac{A}{2} \cos \frac{B}{2} \sin \frac{C}{2};$$ $$\therefore \sin \frac{A}{2} \left(\cos \frac{B}{2} \cos \frac{C}{2} - \sin \frac{B}{2} \sin \frac{C}{2} \right)$$ $$= \cos \frac{A}{2} \left(\sin \frac{B}{2} \cos \frac{C}{2} + \cos \frac{B}{2} \sin \frac{C}{2} \right);$$ $$\therefore \sin \frac{A}{2} \cos \frac{B + C}{2} = \cos \frac{A}{2} \sin \frac{B + C}{2};$$ $$\therefore \sin^2 \frac{A}{2} = \cos^2 \frac{A}{2};$$ whence $\frac{A}{2} = 45^{\circ}$, and $A = 90^{\circ}$. 213. Many important relations connecting a triangle and its circles may be established by elementary geometry. With the notation of previous articles, since tangents to a circle from the same point are equal, we have $$AF = AE$$, $BD = BF$, $CD = CE$; $$\therefore$$ 1 $F + (BD + CD) = \text{half the sum of the sides};$ $$\therefore AF + a = s.$$ $$AF = s - a = AE$$ Similarly, BD = BF = s - b, CD = CE = s - c. Also $$r = AF \tan \frac{A}{2} = (s - a) \tan \frac{A}{2}$$. Similarly, $$r = (s - b) \tan \frac{B}{2}$$, $r = (s - c) \tan \frac{C}{2}$. Again, $$AF_1 = AE_1$$, $BF_1 = BD_1$, $CE_1 = CD_1$; $\therefore 2AF_1 = AF_1 + AE_1 = (AB + BD_1) + (AC + CD_1)$ = sum of the sides: $$AF_1 = s = AE_1$$ $$\therefore BD_1 = BF_1 = s - c, \quad CD_1 = CE_1 = s - b.$$ Also $$r_1 = A F_1 \tan \frac{A}{2} = s \tan \frac{A}{2}.$$ Similarly, $$r_2 = s \tan \frac{B}{2}$$, $r_3 = s \tan \frac{C}{2}$. ## EXAMPLES. XVIII. a. - 1. Two sides of a triangle are 300 ft. and 120 ft., and the included angle is 150° ; find the area. - 2. Find the area of the triangle whose sides are 171, 204, 195. - 3. Find the sine of the greatest angle of a triangle whose sides are 70, 147, and 119. - 4. If the sides of a triangle are 39, 40, 25, find the lengths of the three perpendiculars from the angular points on the opposite sides. - 5. One side of a triangle is 30 ft, and the adjacent angles are $22\frac{1}{2}^{\circ}$ and $112\frac{1}{2}^{\circ}$, find the area. - 6. Find the area of a parallelogram two of whose adjacent sides are 42 and 32 ft., and include an angle of 30°. - 7. The area of a rhombus is 648 sq. yds. and one of the angles is 150°: find the length of each side. - 8. In a triangle if a=13, b=14, c=15, find r and R. - 9. Find r_1 , r_2 , r_3 in the case of a triangle whose sides are 17, 10, 21. - 10. If the area of a triangle is 96, and the radii of the escribed circles are 8, 12, 24, find the sides. Prove the following formulæ: 11. $$\sqrt{rr_1r_2r_3} = \Delta$$. 12. $$s(s-a)\tan\frac{A}{2} = \Delta$$. 13. $$rr_1 \cot \frac{A}{2} = \Delta$$. 14. $$4Rrs = abc$$. 15. $$r_1 r_2 r_3 = r s^2$$. 16. $$r \cot \frac{B}{2} \cot \frac{C}{2} = r_1$$. 17. $$Rr(\sin A + \sin B + \sin C) = \Delta$$. 18. $$r_1 r_2 + r r_3 = ab$$. 19. $$\cos \frac{A}{2} \sqrt{bc(s-b)(s-c)} = \Delta$$. 20. $$r_1 + r_2 = c \cot \frac{C}{2}$$. 21. $$(r_1-r)(r_2+r_3)=a^2$$. $$\mathbf{22.} \quad r_1\cot\frac{\mathcal{A}}{2}\!=\!r_2\cot\frac{\mathcal{B}}{2}\!=\!r_3\cot\frac{\mathcal{C}}{2}\!=\!r\cot\frac{\mathcal{A}}{2}\cot\frac{\mathcal{B}}{2}\cot\frac{\mathcal{C}}{2}.$$ 23. $$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r}$$. 24. $r_2 r_3 + r_3 r_1 + r_1 r_2 = s^2$. 25. $$\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 - \mathbf{r} = 4\mathbf{R}$$. • 26. $r + r_1 + r_2 - r_3 = 4R \cos C$. **27.** $$b^2 \sin 2C + c^2 \sin 2B = 4\Delta$$. **28.** $$4R\cos\frac{C}{2} = (a+b)\sec\frac{A-B}{2}$$. 29. $$a^2 - b^2 = 2Rc\sin(A - B)$$. 30. $$\frac{a^2-b^2}{2} \cdot \frac{\sin A \sin B}{\sin (A-B)} = \Delta$$. 31. If the perpendiculars from
A, B, C to the opposite sides are p_1 , p_2 , p_3 respectively, prove that $$(1) \quad \frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{r}; \qquad (2) \quad \frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p_3} = \frac{1}{r_3}$$ Prove the following identities: 32. $$(r_1-r)(r_2-r)(r_3-r)=4Rr^2$$. 33. $$\left(\frac{1}{r} - \frac{1}{r_1}\right) \left(\frac{1}{r} - \frac{1}{r_2}\right) \left(\frac{1}{r} - \frac{1}{r_3}\right) = \frac{4R}{r^2s^2}$$. 34. $$4\Delta (\cot A + \cot B + \cot C) = a^2 + b^2 + c^2$$. 35. $$\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0.$$ **36.** $$a^2b^2c^2(\sin 2A + \sin 2B + \sin 2C) = 32\Delta^3$$. 37. $a\cos A + b\cos B + c\cos C = 4R\sin A\sin B\sin C$. 38. $$a \cot A + b \cot B + c \cot C = 2(R+r)$$. 39. $$(b+c)\tan\frac{A}{2} + (c+a)\tan\frac{B}{2} + (a+b)\tan\frac{C}{2}$$ = $4R(\cos A + \cos B + \cos C)$. 40. $$r(\sin A + \sin B + \sin C) = 2R \sin A \sin B \sin C$$. **41.** $$\cos^2 \frac{A}{2} + \cos^2 \frac{B}{2} + \cos^2 \frac{C}{2} = 2 + \frac{r}{2R}$$. # Inscribed and circumscribed Polygons. 214. To find the perimeter and area of a regular polygon of n sides inscribed in a circle. Let r be the radius of the circle, and AB a side of the polygon. Join OA, OB, and draw OD bisecting $\angle AOB$; then AB is bisected at right angles in D. And $\angle AOB = \frac{1}{n}$ (four right angles) = $\frac{2\pi}{n}$. Perimeter of polygon = $nAB = 2nAD = 2nOA \sin AOD$ $$=2nr\sin\frac{\pi}{n}.$$ Area of polygon = n (area of triangle A OB) $$= \frac{1}{2} nr^2 \sin \frac{2\pi}{n}.$$ 215. To find the perimeter and area of a regular polygon of n sides circumscribed about a given circle. Let r be the radius of the circle, and AB a side of the polygon. Let AB touch the circle at D. Join OA, OB, OD; then OD bisects AB at right angles, and also bisects $\angle AOB$. Perimeter of polygon = $nAB = 2nAD = 2nOD \tan AOD$ = $2nr \tan \frac{\pi}{2}$. Area of polygon = n (area of triangle AOB) $$= nOD \cdot AD$$ $$=nr^2\tan\frac{\pi}{n}$$. 216. There is no need to burden the memory with the formulæ of the last two articles, as in any particular instance they are very readily obtained. Example 1. The side of a regular dodecagon is 2 ft., find the radius of the circumscribed circle. Let r be the required radius. In the adjoining figure we have $$AB = 2$$, $\angle AOB = \frac{2\pi}{12}$. $AB = 2AD = 2r \sin \frac{\pi}{12}$; $\therefore 2r \sin 15^\circ = 2$; $\therefore r = \frac{1}{\sin 15^\circ} = \frac{2\sqrt{2}}{\sqrt{3} - 1} = \sqrt{2}(\sqrt{3} + 1)$. Thus the radius is $\sqrt{6+\sqrt{2}}$ feet. Example 2. A regular pentagon and a regular decagon have the same perimeter, prove that their areas are as 2 to $\sqrt{5}$. Let AB be one of the n sides of a regular polygon, O the centre of the circumscribed circle, OD perpendicular to AB. Then if AB = a, area of polygon = $nAD \cdot OD$ $$= nAD \cdot AD \cot \frac{\pi}{n}$$ $$= \frac{na^2}{4} \cot \frac{\pi}{n}.$$ Denote the perimeter of the pentagon and decagon by 10c. Then each side of the pen- tagon is 2c, and its area is $5c^2 \cot \frac{\pi}{5}$. Each side of the decagon is c, and its area is $\frac{5}{2}c^2\cot\frac{\pi}{10}$. ## 217. To find the area of a circle. Let r be the radius of the circle, and let a regular polygon of n sides be described about it. Then from the adjoining figure, we have area of polygon = n (area of triangle AOB) $$= n \left(\frac{1}{2}AB \cdot \partial D\right)$$ $$= \frac{1}{2}\partial D \cdot nAB$$ $$= \frac{r}{2} \times \text{perimeter of polygon.}$$ By increasing the number of sides without limit, the area and the perimeter of the polygon may be made to differ as little as we please from the area and the circumference of the circle. Hence area of a circle $$=\frac{r}{2} \times$$ circumference $=\frac{r}{2} \times 2\pi r$ [Art. 59.] $=\pi r^2$. # 218. To find the area of the sector of a circle. Let θ be the circular measure of the angle of the sector; then by Geometry, $$\frac{\text{area of sector}}{\text{area of circle}} = \frac{\theta}{2\pi} ;$$ $$\therefore \text{ area of sector} = \frac{\theta}{2\pi} \times \pi r^2 = \frac{1}{2} r^2 \theta.$$ ## EXAMPLES. XVIII. b. In this Exercise take $$\pi = \frac{22}{7}$$. 1. Find the area of a regular decagon inscribed in a circle whose radius is 3 feet; given sin 36°= 588. 2. Find the perimeter and area of a regular quindecagon described about a circle whose diameter is 3 yards; given $$\tan 12^{\circ} = .213$$. - 3. Shew that the areas of the inscribed and circumscribed circles of a regular hexagon are in the ratio of 3 to 4. - 4. Find the area of a circle inscribed in a regular pentagon whose area is 250 sq. ft.; given cot 36°=1.376. - 5. Find the perimeter of a regular octagon inscribed in a circle whose area is 1386 sq. inches; given sin 22° 30′ = 382. - ✓ 6. Find the perimeter of a regular pentagon described about a circle whose area is 616 sq. ft.; given tan 36° = '727. - 7. Find the diameter of the circle circumscribing a regular quindecagon, whose inscribed circle has an area of 2464 sq. ft.; given sec 12°=1.022. - 8. Find the area of a regular dodecagon in a circle about a regular pentagon 50 sq. ft. in area; given cosec 72°=1.0515. - **9.** A regular pentagon and a regular decagon have the same area, prove that the ratio of their perimeters is $\sqrt[4]{5}$: $\sqrt{2}$. - 10. Two regular polygons of n sides and 2n sides have the same perimeter; shew that the ratio of their areas is $$2\cos\frac{\pi}{n}:1+\cos\frac{\pi}{n}.$$ 11. If 2a be the side of a regular polygon of n sides, R and r the radii of the circumscribed and inscribed circles, prove that $$R + r = a \cot \frac{\pi}{2n}.$$ - 12. Prove that the square of the side of a regular pentagon inscribed in a circle is equal to the sum of the squares of the sides of a regular hexagon and decagon inscribed in the same circle. - 13. With reference to a given circle, A_1 and B_1 are the areas of the inscribed and circumscribed regular polygons of n sides, A_2 and B_2 are corresponding quantities for regular polygons of 2n sides: prove that - (1) A_2 is a geometric mean between A_1 and B_1 ; - (2) B_2 is a harmonic mean between A_2 and B_1 ## The Ex-central Triangle. *219. Let ABC be a triangle, I_1 , I_2 , I_3 its ex-centres; then $I_1I_2I_3$ is called the **Ex-central triangle** of ABC. Let I be the in-centre; then from the construction for finding the positions of the in-centre and ex-centres, it follows that: (i) The points I, I_1 lie on the line bisecting the angle BAC; the points I, I_2 lie on the line bisecting the angle ABC; the points I, I_3 lie on the line bisecting the angle ACB. (ii) The points I_2 , I_3 lie on the line bisecting the angle BAC externally; the points I_3 , I_1 lie on the line bisecting the angle ABC externally; the points I_1 , I_2 lie on the line bisecting the angle ABC externally. (iii) The line AI_1 is perpendicular to I_2I_3 ; the line BI_2 is perpendicular to I_3I_1 ; the line CI_3 is perpendicular to I_1I_2 . Thus the triangle ABC is the $Pedal\ triangle$ of its ex-central triangle $I_1I_2I_3$. [See Art. 223.] (iv) The angles IBI_1 and ICI_1 are right angles; hence the points B, I, C, I_1 are concyclic. Similarly, the points C, I, A, I_2 , and the points A, I, B, I_3 are concyclic. (v) The lines AI_1 , BI_2 , CI_3 meet at the in-centre I, which is therefore the *Orthocentre* of the ex-central triangle $I_1I_2I_3$. (vi) Each of the four points I, I_1 , I_2 , I_3 is the orthocentre of the triangle formed by joining the other three points. *220. To find the sides and angles of the ex-central triangle. With the figure of the last article, $$\angle BI_1C = \angle BI_1I + \angle CI_1I$$ $$= \angle BCI + \angle CBI$$ $$= \frac{C}{2} + \frac{B}{2} = 90^{\circ} - \frac{A}{2}.$$ Thus the angles are $$90^{\circ} - \frac{A}{2}$$, $90^{\circ} - \frac{B}{2}$, $90^{\circ} - \frac{C}{2}$. Again, the points B, I_3 , I_2 , C are concyclic; $$\therefore$$ $\angle I_1I_2I_3$ = supplement of $\angle I_3BC = \angle I_1BC$; \therefore the triangles $I_1I_2I_3$, I_1BC are similar; $$\therefore \frac{I_2 I_3}{BC} = \frac{I_3 I_1}{I_1 C} = \sec\left(90^\circ - \frac{A}{2}\right) = \csc\frac{A}{2};$$ $\therefore I_2 I_3 = a \csc \frac{A}{2} = 4R \cos \frac{A}{2}.$ Thus the sides are $$4R\cos\frac{A}{2}$$, $4R\cos\frac{B}{2}$, $4R\cos\frac{C}{2}$. *221. To find the area and circum-radius of the ex-central triangle. The area $=\frac{1}{2}$ (product of two sides) × (sine of included angle) $$\begin{split} &= \frac{1}{2} \times 4R \cos \frac{B}{2} \times 4R \cos \frac{C}{2} \times \sin \left(90^{\circ} - \frac{A}{2} \right) \\ &= 8R^{2} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}. \end{split}$$ The circum-radius = $$\frac{I_2 I_3}{2 \sin I_2 I_1 I_2} = \frac{4R \cos \frac{A}{2}}{2 \sin \left(90^\circ - \frac{A}{2}\right)} = 2R$$. H. K. E. T. *222. To find the distances between the in-centre and ex-centres. With the figure of Art. 219, the \angle s IBI_1 , ICI_1 are right angles; $\therefore II_1$ is the diameter of the circum-circle of the triangle BCI_1 ; $$\therefore II_1 = \frac{BC}{\sin BI_1C} = \frac{a}{\cos \frac{A}{2}}$$ $$=4R\sin\frac{A}{2}.$$ Thus the distances are $$4R\sin\frac{A}{2}$$, $4R\sin\frac{B}{2}$, $4R\sin\frac{C}{2}$. ### The Pedal Triangle. *223. Let G, H, K be the feet of the perpendiculars from the augular points on the opposite sides of the triangle ABC; then GHK is called the **Pedal triangle** of ABC. The three perpendiculars AG, BH, CK meet in a point O which is called the **Orthocentre** of the triangle ABC. *224. To find the sides and angles of the pedal triangle. In the figure of the last article, the points K, O, U, B are concyclic; $$\therefore \angle OGK = \angle OBK = 90^{\circ} - A.$$ Also the points H, O, G, C are concyclic; $$\therefore \angle OGH = \angle OCH = 90^{\circ} - A;$$ $$\therefore \angle KGH = 180^{\circ}
- 2A.$$ Thus the angles of the pedal triangle are $$180^{\circ} - 2.1$$, $180^{\circ} - 2B$, $180^{\circ} - 2C$. Again, the triangles AKH, ABC are similar; $$\therefore \frac{HK}{BC} = \frac{AK}{AC} = \cos A;$$ $$\therefore HK = a \cos A.$$ Thus the sides of the pedal triangle are $$a\cos A$$, $b\cos B$, $c\cos C$. In terms of R, the equivalent forms become $$R \sin 2A$$, $R \sin 2B$, $R \sin 2C$. If the angle ACB of the given triangle is obtuse, the expressions $180^{\circ} - 2C'$ and $c \cos C'$ are both negative, and the values we have obtained require some modification. We leave the student to shew that in this case the angles are 2A, 2B, $2C' - 180^{\circ}$, and the sides $a \cos A$, $b \cos B$, $-c \cos C'$. *225. To find the area and circum-radius of the pedal triangle. The area $=\frac{1}{2}$ (product of two sides) × (sine of included angle) $$= \frac{1}{2} R \sin 2B \cdot R \sin 2C' \cdot \sin (180 - 2A)$$ $$= \frac{1}{2} R^2 \sin 2A \sin 2B \sin 2C.$$ The circum-radius = $$\frac{HK}{2\sin HGK} = \frac{R\sin 2A}{2\sin (180^\circ - 2A)} = \frac{R}{2}.$$ Note. The circum-circle of the pedal triangle is the nine points circle of the triangle ABC. Thus the radius of the nine points circle of the triangle ABC is $\frac{R}{2}$. [See Hall and Stevens' Geometry, p. 217.] *226. In Art. 224, we have proved that OG, OH, OK bisect the angles HGK, KHG, GKH respectively, so that O is the in-centre of the triangle GHK. Thus the orthocentre of a triangle is the in-centre of the pedal triangle. Again, the line CGB which is at right angles to OG bisects $\angle HGK$ externally. Similarly the lines AHC and BKA bisect $\angle KHG$ and $\angle GKH$ externally, so that ABC is the ex-central triangle of its pedal triangle GHK. *227. In Art. 219, we have seen that ABC is the pedal tri- angle of its ex-central triangle $I_1I_2I_3$. Certain theorems depending on this connection are more evident from the adjoining figure, in which the fact that ABC is the pedal triangle of $I_1I_2I_3$ is brought more prominently into view. For instance, the circum-circle of the triangle ABC is the nine points circle of the triangle $I_1I_2I_3$, and passes through the middle points of II_1 , II_2 , II_3 and of I_2I_3 , I_3I_1 , I_1I_3 . *228. To find the distance between the in-centre and circumcentre. Let S be the circum-centre and I the in-centre. Produce AI to meet the circum-circle in H; join CH and CI. Draw IE perpendicular to AC. Produce HS to meet the circumference in L, and join CL. Then $$\angle HIC = \angle IAC + \angle ICA$$ $$= \frac{A}{2} + \frac{C}{2};$$ $$\angle HCI = \angle ICB + \angle BCH$$ $$= \frac{C}{2} + \angle BAH$$ $$= \frac{C}{2} + \frac{A}{2};$$ $$\therefore HI = HC = 2R \sin \frac{A}{2}.$$ Also $$AI = IE \operatorname{cosec} \frac{A}{2} = r \operatorname{cosec} \frac{A}{2};$$ Produce SI to meet the circumference in M and N. Since MIN, AIII are chords of the circle, $$AI.III = MI.IN = (R + SI)(R - SI);$$ $\therefore 2Rr = R^2 - SI^2;$ that is, $$SI^2 = R^2 - 2Rr.$$ *229. To find the distance of an ex-centre from the circumcentre. Let S be the circum-centre, and I the in-centre; then AI produced passes through the ex-centre I_1 . Let AI_1 meet the circum-circle in H; join CI, BI, CH, BII, CI_1 , BI_1 . Draw I_1E_1 perpendicular to AC. Produce HS to meet the circumference in L, and join CL. The angles IBI_1 and ICI_1 are right angles; hence the circle on II_1 as diameter passes through B and C. The chords *BH* and *CH* of the circum-circle subtend equal angles at *A*, and are therefore equal. But from the last article, HC = HI; $\therefore HB = HC = HI$: hence H is the centre of the circle round IBI_1C . $$\therefore HI_1 = HC = 2R\sin\frac{A}{2}.$$ Now $$SI_1^2 - R^2 = \text{square of tangent from } I_1$$ $$= I_1 H \cdot I_1 A$$ $$= 2R \sin \frac{A}{2} \cdot r_1 \csc \frac{A}{2}$$ $$= 2Rr_1.$$ $$\therefore SI_2^2 = R^2 + 2Rr_1.$$ *230. To find the distance of the orthocentre from the circumcentre. With the usual notation, we have $SO^2 = SA^2 + AO^2 - 2SA \cdot AO \cos SAO$. $=(90^{\circ}-B)-(90^{\circ}-C)$ Now $$AS=R$$; $AO=AH$ cosec C $=c\cos A$ cosec C $=2R\sin C\cos A$ cosec C $=2R\cos A$; $AC=ACC=ACC$ =C-B. $$\therefore SO^2 = R^2 + 4R^2 \cos^2 A - 4R^2 \cos A \cos (C - B)$$ $$= R^2 - 4R^2 \cos A \{\cos (B + C) + \cos (C - B)\}$$ $$= R^2 - 8R^2 \cos A \cos B \cos C$$ The student may apply a similar method to establish the results of the last two articles. #### *EXAMPLES. XVIII. c. 1. Shew that the distance of the in-centre from A is $$4R\sin\frac{B}{2}\sin\frac{C}{2}.$$ 2. Shew that the distances of the ex-centre I_1 from the angular points A, B, C are $$4R\cos\frac{B}{2}\cos\frac{C}{2},\quad 4R\sin\frac{A}{2}\cos\frac{C}{2},\quad 4R\sin\frac{A}{2}\cos\frac{B}{2}.$$ 3. Prove that the area of the ex-central triangle is equal to (1) $$2Rs$$; (2) $\frac{1}{2}\Delta\operatorname{cosec}\frac{A}{2}\operatorname{cosec}\frac{B}{2}\operatorname{cosec}\frac{C}{2}$. 4. Shew that $$r. II_1. II_2. II_3 = 4R. IA. IB. IC.$$ 5. Shew that the perimeter and in-radius of the pedal triangle are respectively $$4R \sin A \sin B \sin C$$ and $2R \cos A \cos B \cos C$. 6. If g, h, k denote the sides of the pedal triangle, prove that (1) $$\frac{g}{a^2} + \frac{h}{b^2} + \frac{k}{c^2} = \frac{a^2 + b^2 + c^2}{2abc}$$; (2) $\frac{(b^2 - c^2)}{a^2} \frac{g}{c^2} + \frac{(c^2 - a^2)}{b^2} \frac{h}{c^2} + \frac{(a^2 - b^2)}{c^2} \frac{k}{c^2} = 0$. - 7. Prove that the ex-radii of the pedal triangle are $2R\cos A\sin B\sin C$, $2R\sin A\cos B\sin C$, $2R\sin A\sin B\cos C$ - 8. Prove that any formula which connects the sides and angles of a triangle holds if we replace - (1) a, b, c by $a \cos A$, $b \cos B$, $c \cos C$, and A, B, C by $180^{\circ} - 2A$, $180^{\circ} - 2B$, $180^{\circ} - 2C$: - (2) a, b, c by $a \operatorname{cosec} \frac{A}{2}$, $b \operatorname{cosec} \frac{B}{2}$, $c \operatorname{cosec} \frac{C}{2}$, and A, B, C by $90^{\circ} - \frac{A}{2}$, $90^{\circ} - \frac{B}{2}$, $90^{\circ} - \frac{C}{2}$. - 9. Prove that the radius of the circum-circle is never less than the diameter of the in-circle. - If R = 2r, shew that the triangle is equilateral. - 11. Prove that $$SI^2 + SI_1^2 + SI_2^2 + SI_3^2 = 12R^2$$ - 12. Prove that - (1) $a \cdot AI^2 + b \cdot BI^2 + c \cdot CI^2 = abc$: - (2) $a \cdot AI_1^2 b \cdot BI_1^2 c \cdot CI_1^2 = abc$ - 13. If GHK be the pedal triangle, and O the orthocentre, prove that (1) $$\frac{\partial G}{\partial G} + \frac{\partial H}{\partial H} + \frac{\partial K}{\partial K} = 1$$; (2) $$\frac{\partial G}{\partial G + a \cot A} + \frac{\partial H}{\partial H + b \cot B} + \frac{\partial K}{\partial K + c \cot C} = 1.$$ 14. If GHK be the pedal triangle, shew that the sum of the circum-radii of the triangles AHK, BKG, CGH is equal to R+r. - 15. If $A_1B_1C_1$ is the ex-central triangle of ABC, and $A_2B_2C_2$ the ex-central triangle of $A_1B_1C_1$, and $A_3B_3C_3$ the ex-central triangle of $A_2B_2C_2$, and so on: find the angles of the triangle $A_nB_nC_n$, and prove that when n is indefinitely increased the triangle becomes equilateral. - 16. Prove that - (1) $OS^2 = 9R^2 a^2 b^2 c^2$; - (2) $OI^2 = 2r^2 4R^2 \cos A \cos B \cos C$; - (3) $OI_1^2 = 2r_1^2 4R^2 \cos A \cos B \cos C$. - 17. If f, g, h denote the distances of the circum-centre of the pedal triangle from the angular points of the original triangle, shew that $$4(f^2+g^2+h^2)=11R^2+8R^2\cos A\cos B\cos C$$. #### Quadrilaterals. *231. To prove that the area of a quadrilateral is equal to $\frac{1}{9}$ (product of the diagonals) × (sine of included angle). Let the diagonals AC, BD intersect at P, and let $\angle DPA = a$, and let S denote the area of the quadrilateral. $$\Delta DAC = \Delta APD + \Delta CPD$$ $$= \frac{1}{2}DP \cdot AP\sin \alpha$$ $$+ \frac{1}{2}DP \cdot PC\sin (\pi - \alpha)$$ $$= \frac{1}{2}DP (AP + PC)\sin \alpha$$ $$= \frac{1}{2}DP \cdot AC\sin \alpha.$$ Similarly $$\triangle ABC = \frac{1}{2}BP$$, $AC\sin a$. $$\therefore S = \frac{1}{2} (DP + BP) AC \sin \alpha$$ $$= \frac{1}{2} DB \cdot AC \sin \alpha.$$ *232. To find the area of a quadrilateral in terms of the sides and the sum of two opposite angles. Let *ABCD* be the quadrilateral, and let *a*, *b*, *c*, *d* be the lengths of its sides, *S* its area. By equating the two values of BD^2 found from the triangles BAD, BCD, we have $$a^2 + d^2 - 2ad \cos A = b^2 + c^2 - 2bc \cos C$$; $\therefore a^2 + d^2 - b^2 - c^2 = 2ad \cos A - 2bc \cos C$(1). Also S = sum of areas of triangles BAD, BCD $$= \frac{1}{2} ad \sin A + \frac{1}{2} be \sin C;$$ $$\therefore 4S = 2ad \sin A + 2bc \sin C$$(2). Square (2) and add to the square of (1); $$\therefore 16S^2 + (a^2 + d^2 - b^2 - c^2)^2 = 4a^2d^2 + 4b^2c^2 - 8abcd\cos(A + C).$$ Let A + C = 2a; then $$\cos(A+C) = \cos 2a = 2\cos^2 a - 1;$$ $$\therefore 16S^2 = 4(ad+bc)^2 - (a^2+d^2-b^2-c^2)^2 - 16abcd\cos^2 a.$$ But the first two terms on the right $$= (2ad + 2bc + a^2 + d^2 - b^2 - c^2) (2ad + 2bc - a^2 - d^2 + b^2 + c^2)$$ $$= \{(a+d)^2 - (b-c)^2\} \{(b+c)^2 - (a-d)^2\}$$ $$= (a+d+b-c) (a+d-b+c) (b+c+a-d) (b+c-a+d)$$ $$= (2\sigma - 2c) (2\sigma - 2b) (2\sigma - 2d) (2\sigma - 2a),$$ where $a+b+c+d=2\sigma$. $$=16(\sigma-a)(\sigma-b)(\sigma-c)(\sigma-d).$$ Thus $\delta^2 = (\sigma - a)(\sigma - b)(\sigma - c)(\sigma - d) - abcd \cos^2 a$, where 2σ denotes the sum of the sides, 2a the sum of either pair of opposite angles. *233. In the case of a cyclic quadrilateral, $A + C = 180^{\circ}$, so that $a = 90^{\circ}$; hence $$S = \sqrt{(\sigma - a)(\sigma - b)(\sigma - c)(\sigma - d)}$$. This formula may be obtained directly as in the last article by making use of the condition $A+C=180^{\circ}$ during the course of the work. In this case $\cos C=-\cos A$, and $\sin C=\sin A$, so that the expressions (1) and (2) become $$a^2+d^2-b^2-c^2=2 (ad+bc)\cos A,$$ $4S=2 (ad+bc)\sin A;$ and whence by eliminating A we
obtain $$16S^2 + (a^2 + d^2 - b^2 - c^2)^2 = 4(ad + bc)^2.$$ *234. To find the diagonals and the circum-radius of a cyclic quadrilateral. If ABCD is a cyclic quadrilateral, we have just proved that $$2(ad+bc)\cos A = a^2 + d^2 - b^2 - c^2$$. Now $$BD^2 = a^2 + d^2 - 2ad \cos A$$ $$= a^{2} + d^{2} - \frac{ad(a^{2} + d^{2} - b^{2} - c^{2})}{ad + bc}$$ $$= \frac{bc(a^{2} + d^{2}) + ad(b^{2} + c^{2})}{ad + bc}$$ $$= \frac{(ab + cd)(ac + bd)}{ad + bc}.$$ Similarly, we may prove that $$AC^2 = \frac{(ad+bc)(ac+bd)}{ab+cd}.$$ Thus $$AC$$. $BD = ac + bd$, and $$\frac{AC}{BD} = \frac{ad + bc}{ab + cd}.$$ The circle passing round the quadrilateral circumscribes the triangle ABD; hence the circum-radius = $$\frac{BD}{2\sin A}$$ = $\frac{(ad+bc)BD}{2(ad+bc)\sin A}$ = $\frac{(ad+bc)BD}{4S}$ = $\frac{1}{4S}\sqrt{(ab+cd)(ac+bd)(ad+bc)}$. Example. A quadrilateral ABCD is such that one circle can be inscribed in it and another circle circumscribed about it; shew that $\tan^2\frac{A}{2}=\frac{bc}{ad}$. If a circle can be inscribed in a quadrilateral, the sum of one pair of the opposite sides is equal to that of the other pair; $$\therefore a+c=b+d.$$ Since the quadrilateral is cyclic, $$\cos A = \frac{a^2 + d^2 - b^2 - c^2}{2(ad + bc)}.$$ [Art. 233.] But a - d = b - c, so that $a^2 - 2ad + d^2 = b^2 - 2bc + c^2$; :. $$a^2 + d^2 - b^2 - c^2 = 2 (ad - bc);$$ $$\therefore \cos A = \frac{ad - bc}{ad + bc};$$ $$\therefore \tan^2 \frac{A}{2} = \frac{1 - \cos A}{1 + \cos A} = \frac{bc}{ad}.$$ #### *EXAMPLES. XVIII. d. - 1. If a circle can be inscribed in a quadrilateral, shew that its radius is S/σ where S is the area and 2σ the sum of the sides of the quadrilateral. - 2. If the sides of a cyclic quadrilateral be 3, 3, 4, 4, shew that a circle can be inscribed in it, and find the radii of the inscribed and circumscribed circles. - 3. If the sides of a cyclic quadrilateral be 1, 2, 4, 3, shew that the cosine of the angle between the two greatest sides is $\frac{5}{7}$, and that the radius of the inscribed circle is 98 nearly. - 4. The sides of a cyclic quadrilateral are 60, 25, 52, 39: shew that two of the angles are right angles, and find the diagonals and the area. - 5. The sides of a quadrilateral are 4, 5, 8, 9, and one diagonal is 9: find the area. - 6. If a circle can be inscribed in a cyclic quadrilateral, shew that the area of the quadrilateral is \sqrt{abcd} , and that the radius of the circle is $$2\sqrt{abcd}/(a+b+c+d)$$. - 7. If the sides of a quadrilateral are given, shew that the area is a maximum when the quadrilateral can be inscribed in a circle. - 8. If the sides of a quadrilateral are 23, 29, 37, 41 inches, prove that the maximum area is 7 sq. ft. - 9. If ABCD is a cyclic quadrilateral, prove that $$\tan^2 \frac{B}{2} = \frac{(\sigma - \alpha)(\sigma - b)}{(\sigma - c)(\sigma - d)}.$$ 10. If f, g denote the diagonals of a quadrilateral and β the angle between them, prove that $$2fg\cos\beta = (a^2 + c^2) \sim (b^2 + d^2).$$ 11. If β is the angle between the diagonals of any quadrilateral, prove that the area is $$\frac{1}{4} \{ (a^2 + c^2) \sim (b^2 + d^2) \} \tan \beta.$$ 12. Prove that the area of a quadrilateral in which a circle can be inscribed is $$\sqrt{abcd} \sin \frac{A+C}{2}$$. 13. If a circle can be inscribed in a quadrilateral whose diagonals are f and g, prove that $$4S^2 = f^2g^2 - (ac - bd)^2$$. - 14. If β is the angle between the diagonals of a cyclic quadrilateral, prove that - (1) $(ac+bd)\sin\beta = (ad+bc)\sin A$; (2) $$\cos \beta = \frac{(a^2 + c^2) \sim (b^2 + d^2)}{2(ac + bd)}$$: (3) $$\tan^2 \frac{\beta}{2} = \frac{(\sigma - b)(\sigma - d)}{(\sigma - a)(\sigma - c)}$$ or $\frac{(\sigma - a)(\sigma - c)}{(\sigma - b)(\sigma - d)}$. 15. If f, g are the diagonals of a quadrilateral, shew that $$S = \frac{1}{4}\sqrt{4f^2g^2 - (a^2 + c^2 - b^2 - d^2)^2}.$$ 16. In a cyclic quadrilateral, prove that the product of the segments of a diagonal is $$abcd(ac+bd)(ab+cd)(ad+bc).$$ 235. The following exercise consists of miscellaneous questions involving the properties of triangles. #### EXAMPLES. XVIII. e. 1. If the sides of a triangle are 242, 1212, 1450 yards, shew that the area is 6 acres. 2. One of the sides of a triangle is 200 yards and the adjacent angles are 22.5° and 67.5°: find the area. 3. If $r_1 = 2r_2 = 2r_3$, shew that 3a = 4b. 4. If a, b, c are in A. P., shew that r_1, r_2, r_3 are in H. P. 5. Find the area of a triangle whose sides are $$\frac{y}{z} + \frac{z}{x}$$, $\frac{z}{x} + \frac{x}{y}$, $\frac{x}{y} + \frac{y}{z}$. 6. If $\sin A : \sin C = \sin (A - B) : \sin (B - C)$, shew that a^2 , b^2 , c^2 are in A. P. Prove that 7. $$\frac{a \sin A + b \sin B + c \sin C}{4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}} = \frac{a^2 + b^2 + c^2}{2s}.$$ 8. $$\left(\frac{a^2}{\sin A} + \frac{b^2}{\sin B} + \frac{c^2}{\sin C}\right) \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = \Delta$$. 9. $$(r_2+r_3)(r_3+r_1)(r_1+r_2)=4R(r_2r_3+r_3r_1+r_1r_2).$$ 10. $$\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} = \frac{r_1 + r_2 + r_3}{(r_2 r_3 + r_3 r_1 + r_1 r_2)^{\frac{1}{2}}}$$ 11. $$bc \cot \frac{A}{2} + ca \cot \frac{B}{2} + ab \cot \frac{C}{2} = 4Rs^2 \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - \frac{3}{s} \right)$$. 12. $$\left(\frac{1}{r} + \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)^2 = \frac{4}{r} \left(\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}\right)$$. 13. The perimeter of a right-angled triangle is 70, and the in-radius is 6; find the sides. 14. If f, g, h are the perpendiculars from the circum-centre on the sides, prove that $$\frac{a}{f} + \frac{b}{g} + \frac{c}{h} = \frac{abc}{4fgh}.$$ - 15. An equilateral triangle and a regular hexagon have the same perimeter; shew that the areas of their inscribed circles are as 4 to 9. - *16. Shew that the perimeter of the pedal triangle is equal to $abc/2R^2$. - *17. Shew that the area of the ex-central triangle is equal to $abc (a+b+c)/4\Delta$. - 18. In the ambiguous case, if A, a, b are the given parts, and c_1 , c_2 the two values of the third side, shew that the distance between the circum-centres of the two triangles is $\frac{c_1 \sim c_2}{2 \sin A}$. - *19. If β be the angle between the diagonals of a cyclic quadrilateral, shew that $$\sin \beta = \frac{2S}{ac+bd}.$$ *20. Shew that $$r^3$$. II_1 . II_2 . $II_3 = IA^2$. IB^2 . IC^2 . - *21. Shew that the sum of the squares of the sides of the ex-central triangle is equal to 8R(4R+r). - *22. If circles can be inscribed in and circumscribed about a quadrilateral, and if β be the angle between the diagonals, shew that $$\cos \beta = (ac \sim bd)/(ac + bd).$$ - 23. If l, m, n are the lengths of the medians of a triangle, prove that - (1) $4(l^2+m^2+n^2)=3(a^2+b^2+c^2)$; - (2) $(b^2-c^2)l^2+(c^2-a^2)m^2+(a^2-b^2)n^2=0$; - (3) $16(l^4+m^4+n^4)=9(\alpha^4+b^4+c^4).$ - 24. Shew that the radii of the escribed circles are the roots of the equation $$x^3 - (4R + r)x^2 + s^2x - s^2r = 0.$$ 25. If Δ_1 , Δ_2 , Δ_3 be the areas of the triangles cut off by tangents to the in-circle parallel to the sides of a triangle, prove that $$\frac{\Delta_1}{(s-a)^2} = \frac{\Delta_2}{(s-b)^2} = \frac{\Delta_3}{(s-c)^2} = \frac{\Delta}{s^2}.$$ - *26. The triangle LMN is formed by joining the points of contact of the in-circle; show that it is similar to the ex-central triangle, and that their areas are as r^2 to $4R^2$. - 27. In the triangle PQR formed by drawing tangents at A, B, C to the circum-circle, prove that the angles and sides are $$180^{\circ} - 2A$$, $180^{\circ} - 2B$, $180^{\circ} - 2C$; and $$\frac{a}{2\cos B\cos C}, \quad \frac{b}{2\cos C\cos A}, \quad \frac{c}{2\cos A\cos B}.$$ - 28. If p, q, r be the lengths of the bisectors of the angles of a triangle, prove that - $(1) \quad \frac{1}{p}\cos\frac{A}{2} + \frac{1}{q}\cos\frac{B}{2} + \frac{1}{r}\cos\frac{C}{2} = \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\;;$ - $(2) \quad \frac{pqr}{4\Delta} = \frac{abc\;(a+b+c)}{(b+c)\;(c+a)\;(a+b)}\,.$ - 29. If the perpendiculars AG, BH, CK are produced to meet the circum-circle in L, M, N, prove that - (1) area of triangle $LMN = 8\Delta \cos A \cos B \cos C$; - (2) $AL \sin A + BM \sin B + CN \sin C = 8R \sin A \sin B \sin C$. - **EQ.** If r_a , r_b , r_c be the radii of the circles inscribed between the in-circle and the sides containing the angles A, B, C respectively, shew that (1) $$r_a = r \tan^2 \frac{\pi - 1}{1}$$; (2) $\sqrt{r_b r_c} + \sqrt{r_c r_a} + \sqrt{r_a r_b} = r$. *31. Lines drawn through the angular points of a triangle ABC parallel to the sides of the pedal triangle form a triangle XYZ: shew that the perimeter and area of XYZ are respectively $2R \tan A \tan B \tan C$ and $R^2 \tan A \tan B \tan C$. *32. A straight line cuts three concentric circles in A, B, C and passes at a distance p from their centre: shew that the area of the triangle formed by the tangents at A, B, C is $$\frac{BC,CA,AB}{2p}$$ #### MISCELLANEOUS EXAMPLES, F. - 1. If $a+\beta+\gamma+\delta=180^{\circ}$, shew that $\cos a \cos \beta + \cos \gamma \cos \delta = \sin a \sin \beta + \sin \gamma \sin \delta$. - Prove that cos (15° A) sec 15° sin (15° A) cosec 15° = 4 sin A. - 3. Shew that in a triangle $$\cot A + \sin A \csc B \csc C$$ retains the same value if any two of the angles A, B, C are interchanged. - 4. If a=2, $b=\sqrt{8}$, $A=30^{\circ}$, solve the triangle. - 5. Shew that - (1) $\cot 18^{\circ} = \sqrt{5} \cot 36^{\circ}$; - (2) $16 \sin 36^{\circ} \sin 72^{\circ} \sin 108^{\circ} \sin 144^{\circ} = 5$. - 6. Find the number of ciphers before the first significant digit in ('0396)'60, given $$\log 2 = 30103$$, $\log 3 = 47712$, $\log 11 = 1.04139$. - 7. An observer finds that the angle subtended by the line joining two points A and B on the horizontal plane is 30°. On walking 50 yards directly towards A the angle increases to 75°: find his distance from
B at each observation. - 8. Prove that $\cos^2 a + \cos^2 \beta + \cos^2 \gamma + \cos^2 (a + \beta + \gamma)$ = $2 + 2 \cos (\beta + \gamma) \cos (\gamma + a) \cos (a + \beta)$. - 9. Shew that - (1) $\tan 40^{\circ} + \cot 40^{\circ} = 2 \sec 10^{\circ}$; - (2) $\tan 70^{\circ} + \tan 20^{\circ} = 2 \csc 40^{\circ}$. - 10. Prove that - (1) $2\sin 4a \sin 10a + \sin 2a = 16\sin a \cos a \cos 2a \sin^2 3a$; (2) $$\sin \frac{2\pi}{7} + \sin \frac{4\pi}{7} - \sin \frac{6\pi}{7} = 4 \sin \frac{\pi}{7} \sin \frac{3\pi}{7} \sin \frac{5\pi}{7}$$. - 11. If $B=30^{\circ}$, $b=3\sqrt{2}-\sqrt{6}$, $c=6-2\sqrt{3}$, solve the triangle. - 12. From a ship which is sailing N.E., the bearing of a rock is N.N.W. After the ship has sailed 10 miles the rock bears due W.: find the distance of the ship from the rock at each observation. - 13. Shew that in any triangle $$\frac{b^2 - c^2}{\cos B + \cos C} + \frac{c^2 - a^2}{\cos C + \cos A} + \frac{a^2 - b^2}{\cos A + \cos B} = 0.$$ 14. If $\cos(\theta - a)$, $\cos\theta$, $\cos(\theta + a)$ are in harmonical progression, shew that $$\cos \theta = \sqrt{2} \cos \frac{a}{2}$$. - 15. If $\sin \beta$ be the geometric mean between $\sin \alpha$ and $\cos \alpha$, prove that $\cos 2\beta = 2 \cos^2 \left(\frac{\pi}{4} + \alpha\right)$. - 16. Shew that the distances of the orthocentre from the sides are $2R \cos B \cos C$, $2R \cos C \cos A$, $2R \cos A \cos B$. 17. If $$\cos \theta = \frac{\cos u - e}{1 - e \cos u},$$ prove that $$\tan \frac{\theta}{2} = \sqrt{\frac{1 + e}{1 - e}} \tan \frac{u}{2}.$$ 18. If the sides of a right-angled triangle are $$2(1+\sin\theta)+\cos\theta$$ and $2(1+\cos\theta)+\sin\theta$, prove that the hypotenuse is $$3+2(\cos\theta+\sin\theta)$$. *19. Prove that the distances of the in-centre of the excentral triangle $I_1I_2I_3$ from its ex-centres are $$8R\sin\frac{B+C}{4}$$, $8R\sin\frac{C+A}{4}$. $8R\sin\frac{A+B}{4}$. *20. Prove that the distances between the ex-centres of the ex-central triangle $I_1I_2I_3$ are $$8R\cos\frac{B+C}{4}$$, $8R\cos\frac{C+A}{4}$, $8R\cos\frac{A+B}{4}$. 17 21. If $(1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma),$ show that each expression is equal to $\pm \sin \alpha \sin \beta \sin \gamma$. - 22. If the sum of four angles is 180°, shew that the sum of the products of their sines taken two together is equal to the sum of the products of their cosines taken two together. - *23. In a triangle, shew that (1) $$II_1 . II_2 . II_3 = 16R^2r$$; (2) $II_1^2 + I_2I_3^2 = 16R^2$. 24. Find the angles of a triangle whose sides are proportional to $$(1) \quad \cos\frac{A}{2}, \quad \cos\frac{B}{2}, \quad \cos\frac{C}{2};$$ - (2) $\sin 2A$, $\sin 2B$, $\sin 2C$. - 25. Prove that the expression $\sin^2(\theta + a) + \sin^2(\theta + \beta) - 2\cos(a - \beta)\sin(\theta + a)\sin(\theta + \beta)$ is independent of θ . *26. If a, b, c, d are the sides of a quadrilateral described about a circle, prove that $$ad\sin^2\frac{A}{2} = bc\sin^2\frac{C}{2}.$$ 27. Tangents parallel to the three sides are drawn to the in-circle. If p, q, r be the lengths of the parts of the tangents within the triangle, prove that $\frac{p}{a} + \frac{q}{b} + \frac{r}{c} = 1$. [The Tables will be required for Examples 28 and 29.] - 28. From the top of a cliff 1566 ft. in height a train, which is travelling at a uniform speed in a straight line to a tunnel immediately below the observer, is seen to pass two consecutive stations at an interval of 3 minutes. The angles of depression of the two stations are 13° 14′ 12″ and 56° 24′ 36″ respectively; how fast is the train travelling? - 29. A harbour lies in a direction 46° 8′ 8′ 8′ South of West from a fort, and at a distance of 27.23 miles from it. A ship sets out from the harbour at noon and sails due East at 10 miles an hour; when will the ship be 20 miles from the fort? ## CHAPTER XIX. #### GENERAL VALUES AND INVERSE FUNCTIONS. **236.** The equation $\sin \theta = \frac{1}{2}$ is satisfied by $\theta = \frac{\pi}{6}$, and by $\theta = \pi - \frac{\pi}{6}$, and all angles coterminal with these will have the same sine. This example shews that there are an infinite number of angles whose sine is equal to a given quantity. Similar remarks apply to the other functions. We proceed to shew how to express by a single formula all angles which have a given sine, cosine, or tangent. 237. From the results proved in Chap. IX., it is easily seen that in going once through the four quadrants, there are two and only two positions of the boundary line which give angles with the same sine, cosine, or tangent. Thus if $\sin a$ has a given value, the positions of the radius vector are OP and OP' bounding the angles a and $\pi - a$. [Art. 92.] If $\cos a$ has a given value, the positions of the radius vector are OP and OP' bounding the angles a and $2\pi - a$. [Art. 105.] If $\tan a$ has a given value, the positions of the radius vector are OP and OP' bounding the angles a and $\pi + a$. [Art. 97.] 238. To find a formula for all the angles which have a given sine. Let a be the smallest positive angle which has a given sine. Draw OP and OP bounding the angles a and $\pi - a$; then the required angles are those coterminal with OP and OP. The positive angles are $$2p\pi + a$$ and $2p\pi + (\pi - u)$, where p is zero, or any positive integer. The negative angles are $$-(\pi + a)$$ and $-(2\pi - a)$, and those which may be obtained from them by the addition of any negative multiple of 2π ; that is, angles denoted by $$2q\pi - (\pi + a)$$ and $2q\pi - (2\pi - a)$, where q is zero, or any negative integer. These angles may be grouped as follows: $$(2p\pi + a,)$$ and $(2p+1)\pi - a,$ $(2q-2)\pi + a,)$ and it will be noticed that even multiples of π are followed by +a, and odd multiples of π by -a. Thus all angles equi-sinal with a are included in the formula $$n\pi+(-1)^n a$$, where n is zero, or any integer positive or negative. This is also the formula for all angles which have the same cosecant as a. Example 1. Write down the general solution of $\sin \theta = \frac{\sqrt{3}}{2}$. The least value of θ which satisfies the equation is $\frac{\pi}{3}$; therefore the general solution is $n\pi + (-1)^n \frac{\pi}{2}$. Example 2. Find the general solution of $\sin^2\theta = \sin^2\alpha$. This equation gives either $$\sin \theta = +\sin \alpha$$(1), or $$\sin \theta = -\sin \alpha = \sin (-\alpha) \dots (2)$$. $$\theta = n\pi + (-1)^n \alpha;$$ $$\theta = n\pi + (-1)^n (-\alpha).$$ Both values are included in the formula $\theta = n\pi \pm \alpha$. 239. To find a formula for all the angles which have a given cosine. Let a be the smallest positive angle which has a given cosine. Draw OP and OP' bounding the angles a and $2\pi - a$; then the required angles are those coterminal with OP and OP'. $2p\pi + a$ and $2p\pi + (2\pi - a)$, where p is zero, or any positive integer. The negative angles are $$-a$$ and $-(2\pi - a)$, and those which may be obtained from them by the addition of any negative multiple of 2π ; that is, angles denoted by $$2q\pi - a$$ and $2q\pi - (2\pi - a)$, where q is zero, or any negative integer. The angles may be grouped as follows: $$2p\pi + a, \\ 2q\pi - a,$$ and $\{(2p+2)\pi - a, \\ (2q-2)\pi + a, \}$ and it will be noticed that the multiples of π are always even, but may be followed by +a or by -a. Thus all angles equi-cosinal with a are included in the formula $$2n\pi \pm a$$ where n is zero, or any integer positive or negative. This is also the formula for all angles which have the same secant as a. Example 1. Find the general solution of $\cos \theta = -\frac{1}{2}$. The least value of θ is $\pi - \frac{\pi}{3}$, or $\frac{2\pi}{3}$; hence the general solution is $2n\pi \pm \frac{2\pi}{3}$. 240. To find a formula for all the angles which have a given tangent. Let a be the smallest positive angle which has a given tangent. Draw OP and OP bounding the angles a and $\pi + a$; then the required angles are those coterminal with OP and OP. The positive angles are $$2p\pi + a$$ and $2p\pi + (\pi + a)$, where p is zero, or any positive integer. The negative angles are $$-(\pi - a)$$ and $-(2\pi - a)$, and those which may be obtained from them by the addition of any negative multiple of 2π ; that is, angles denoted by $$2q\pi - (\pi - a)$$ and $2q\pi - (2\pi - a)$, where q is zero, or any negative integer. The angles may be grouped as follows: $$\begin{array}{c} 2p\pi+a,\\ (2q-2)\pi+a, \end{array} \quad \text{and} \quad \begin{cases} (2p+1)\pi+a,\\ (2q-1)\pi+a, \end{cases}$$ and it will be noticed that whether the multiple of π is even or odd, it is always followed by +a. Thus all angles equi-tangential with a are included in the formula $$\theta = n\pi + a$$. This is also the formula for all the angles which have the same cotangent as a. Example. Solve the equation $\cot 4\theta = \cot \theta$. The general solution is $4\theta = n\pi + \theta$; whence $$3\theta = n\pi$$, or $\theta = \frac{n\pi}{3}$. 241. All angles which are both equi-sinal and equi-cosinal with a are included in the formula $2n\pi + a$. All angles equi-cosinal with a are included in the formula $2n\pi \pm a$; so that the multiple of π is even. But in the formula $n\pi + (-1)^n a$, which includes all angles equi-sinal with a, when the multiple of π is even, a must be preceded by the + sign. Thus the formula is $2n\pi + a$. 242. In the solution of equations, the general value of the angle should always be given. Example. Solve the equation $\cos 9\theta = \cos 5\theta - \cos \theta$. By transposition, $(\cos 9\theta + \cos \theta) - \cos 5\theta = 0$; $$\therefore 2\cos 5\theta\cos 4\theta - \cos 5\theta = 0;$$ $$\therefore \cos 5\theta (2\cos 4\theta - 1) = 0;$$ \therefore either $\cos 5\theta = 0$, or $2\cos 4\theta - 1 = 0$. From the first equation, $5\theta = 2n\pi \pm \frac{\pi}{2}$, or
$\theta = \frac{(4n \pm 1)\pi}{10}$; and from the second, $4\theta = 2n\pi \pm \frac{\pi}{3}$, or $\theta = \frac{(6n \pm 1)\pi}{12}$. #### EXAMPLES. XIX. a. Find the general solution of the equations: 1. $$\sin \theta = \frac{1}{2}$$ 1. $$\sin \theta = \frac{1}{2}$$. 2. $\sin \theta = \frac{1}{\sqrt{2}}$. 3. $\cos \theta = \frac{1}{2}$. 3. $$\cos \theta = \frac{1}{2}$$. 4. $$\tan \theta = \sqrt{3}$$. 5. $\cot \theta = -\sqrt{3}$. 6. $\sec \theta = -\sqrt{2}$. 5. $$\cot \theta = -\sqrt{3}$$ 6. $$\sec \theta = -\sqrt{2}$$ 7. $$\cos^2 \theta = \frac{1}{2}$$ 7. $$\cos^2 \theta = \frac{1}{2}$$. 8. $\tan^2 \theta = \frac{1}{3}$. 9. $\csc^2 \theta = \frac{4}{3}$. 9. $$\csc^2\theta = \frac{4}{3}$$ 10. $$\cos \theta = \cos a$$. 16. 11. $$\tan^2 \theta = \tan^2 a$$. 12. $$\sec^2 \theta = \sec^2 a$$. 13. $$\tan 2\theta = \tan \theta$$. 14. $$\csc 3\theta = \csc 3a$$. 15. $$\cos 3\theta = \cos 2\theta$$. 14. $$\csc 3\theta = \csc 3a$$. 16. $\sin 5\theta + \sin \theta = \sin 3\theta$. 17. $$\cos \theta - \cos 7\theta = \sin 4\theta$$. 18. $$\sin 4\theta - \sin 3\theta + \sin 2\theta - \sin \theta = 0$$. 19. $$\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta = 0$$. 20. $$\sin 5\theta \cos \theta = \sin 6\theta \cos 2\theta$$. 21. $$\sin 11\theta \sin 4\theta + \sin 5\theta \sin 2\theta = 0$$. 22. $$\sqrt{2}\cos 3\theta - \cos \theta = \cos 5\theta$$. 23. $$\sin 7\theta - \sqrt{3} \cos 4\theta = \sin \theta$$. **24.** $$1 + \cos \theta = 2 \sin^2 \theta$$. 25. $$\tan^2 \theta + \sec \theta = 1$$. 26. $$\cot^2 \theta - 1 = \csc \theta$$. 27. $$\cot \theta - \tan \theta = 2$$. 28. If $$2\cos\theta = -1$$ and $2\sin\theta = \sqrt{3}$, find θ . **29.** If $$\sec \theta = \sqrt{2}$$ and $\tan \theta = -1$, find θ . 243. In the following examples, the solution is simplified by the use of some particular artifice. Example 1. Solve the equation $\cos m\theta = \sin n\theta$. Here $$\cos m\theta = \cos\left(\frac{\pi}{2} - n\theta\right);$$ $$\therefore m\theta = 2k\pi \pm \left(\frac{\pi}{2} - n\theta\right),$$ where k is zero, or any integer. By transposition, we obtain $$(m+n)\;\theta\!=\!\left(2k+\frac{1}{2}\right)\pi,\;\;\mathrm{or}\;\;(m-n)\;\theta\!=\!\left(2k-\frac{1}{2}\right)\pi.$$ This equation may also be solved through the medium of the sine. For we have $$\sin\left(\frac{\pi}{2} - m\theta\right) = \sin n\theta;$$ $$\therefore \frac{\pi}{2} - m\theta = p\pi + (-1)^p n\theta,$$ where p is zero or any integer; $$\therefore \{m+(-1)^p n\} \theta = \left(\frac{1}{2}-p\right) \pi.$$ Note. The general solution can frequently be obtained in several ways. The various forms which the result takes are merely different modes of expressing the same series of angles. Example 2. Solve $\sqrt{3}\cos\theta + \sin\theta = 1$. Multiply every term by $\frac{1}{2}$, then $$\frac{\sqrt{3}}{2}\cos\theta + \frac{1}{2}\sin\theta = \frac{1}{2},$$ $$\therefore \cos\frac{\pi}{6}\cos\theta + \sin\frac{\pi}{6}\sin\theta = \frac{1}{2};$$ $$\therefore \cos\left(\theta - \frac{\pi}{6}\right) = \frac{1}{2};$$ $$\therefore \theta - \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3};$$ $$\therefore \theta = 2n\pi + \frac{\pi}{2} \text{ or } 2n\pi - \frac{\pi}{6}.$$ Note. In examples of this type, it is a common mistake to square the equation; but this process is objectionable, because it introduces solutions which do not belong to the given equation. Thus in the present instance, $$\sqrt{3}\cos\theta = 1 - \sin\theta$$; by squaring, $$3\cos^2\theta = (1-\sin\theta)^2.$$ But the solutions of this equation include the solutions of $$-\sqrt{3}\cos\theta = 1 - \sin\theta$$, as well as those of the given equation. Example 3. Solve $\cos 2\theta = \cos \theta + \sin \theta$. From this equation, $\cos^2 \theta - \sin^2 \theta = \cos \theta + \sin \theta$; $$\therefore (\cos \theta + \sin \theta)(\cos \theta - \sin \theta) = \cos \theta + \sin \theta;$$ $$\cos\theta + \sin\theta = 0....(1),$$ or $$\cos\theta - \sin\theta = 1....(2).$$ From (1), $$\tan \theta = -1,$$ $$\therefore \theta = n\pi - \frac{\pi}{4}.$$ $$\frac{1}{\sqrt{2}}\cos\theta - \frac{1}{\sqrt{2}}\sin\theta = \frac{1}{\sqrt{2}};$$ $$\therefore \cos\theta\cos\frac{\pi}{4} - \sin\theta\sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}.$$ $$\therefore \cos\left(\theta + \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}};$$ $$\therefore \cos\left(\theta + \frac{\pi}{4}\right) = \frac{\pi}{2};$$ $$\therefore \theta + \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4};$$ $$\therefore \theta = 2n\pi \text{ or } 2n\pi - \frac{\pi}{2}.$$ #### EXAMPLES. XIX. b. Find the general solution of the equations: 1. $\tan p\theta = \cot q\theta$. - 2. $\sin m\theta + \cos n\theta = 0$. - 3. $\cos \theta \sqrt{3} \sin \theta = 1$. - 4. $\sin \theta \sqrt{3} \cos \theta = 1$. - 5. $\cos \theta = \sqrt{3} (1 \sin \theta)$. - 6. $\sin \theta + \sqrt{3} \cos \theta = \sqrt{2}$. Find the general solution of the equations: 7. $$\cos \theta - \sin \theta = \frac{1}{\sqrt{2}}$$. 8. $\cos \theta + \sin \theta + \sqrt{2} = 0$. 9. $$\cot \theta + \cot \theta = \sqrt{3}$$. 10. $\cot \theta - \cot 2\theta = 2$. 11. $$2 \sin \theta \sin 3\theta = 1$$, 12. $\sin 3\theta = 8 \sin^3 \theta$. 13. $$\tan \theta + \tan 3\theta = 2 \tan 2\theta$$. 14. $\cos \theta - \sin \theta = \cos 2\theta$. 15. $$\csc \theta + \sec \theta = 2\sqrt{2}$$. 16. $\sec \theta - \csc \theta = 2\sqrt{2}$. 17. $$\sec 4\theta - \sec 2\theta = 2$$. 18. $\cos 3\theta + 8 \cos^3 \theta = 0$. 19. $$1 + \sqrt{3} \tan^2 \theta = (1 + \sqrt{3}) \tan \theta$$. **20.** $$\tan^3 \theta + \cot^3 \theta = 8 \csc^3 2\theta + 12$$. 21. $$\sin \theta = \sqrt{2} \sin \phi$$, $\sqrt{3} \cos \theta = \sqrt{2} \cos \phi$. 22. $$\csc \theta = \sqrt{3} \csc \phi$$, $\cot \theta = 3 \cot \phi$. 23. $$\sec \phi = \sqrt{2} \sec \theta$$, $\cot \theta = \sqrt{3} \cot \phi$. 24. Explain why the same two series of angles are given by the equations $$\theta + \frac{\pi}{4} = n\pi + (-1)^n \frac{\pi}{6}$$ and $\theta - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{3}$. 25. Shew that the formulæ $$\left(2n+\frac{1}{4}\right)\pi\pm a$$ and $\left(n-\frac{1}{4}\right)\pi+(-1)^n\left(\frac{\pi}{2}-a\right)$ comprise the same angles, and illustrate by a figure. #### Inverse Circular Functions. **244.** If $\sin \theta = s$, we know that θ may be any angle whose sine is s. It is often convenient to express this statement inversely by writing $\theta = \sin^{-1} s$. In this inverse notation θ stands alone on one side of the equation, and may be regarded as an angle whose value is only known through the medium of its sine. Similarly, $\tan^{-1}\sqrt{3}$ indicates in a concise form any one of the angles whose tangent is $\sqrt{3}$. But all these angles are given by the formula $n\pi + \frac{\pi}{3}$. Thus $$\theta = \tan^{-1} \sqrt{3}$$ and $\theta = n\pi + \frac{\pi}{3}$ are equivalent statements expressed in different forms. 245. Expressions of the form $\cos^{-1} x$, $\sin^{-1} a$, $\tan^{-1} h$ are called **Inverse Circular Functions**. It must be remembered that these expressions denote angles, and that -1 is not an algebraical index; that is, $$\sin^{-1} x$$ is not the same as $(\sin x)^{-1}$ or $\frac{1}{\sin x}$. 246. From Art. 244, we see that an inverse function has an infinite number of values. If f denote any one of the circular functions, and $f^{-1}(x) = A$, the **principal value** of $f^{-1}(x)$ is the smallest numerical value of A. Thus the principal values of $$\cos^{-1}\frac{1}{2}$$, $\sin^{-1}\left(-\frac{1}{2}\right)$, $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$, $\tan^{-1}(-1)$ are 60° , -30° , 135° , -45° . Hence if x be positive, the principal values of $\sin^{-1} x$, $\cos^{-1} x$, $\tan^{-1} x$ all lie between 0 and 90°. If x be negative, the principal values of $\sin^{-1}x$ and $\tan^{-1}x$ lie between 0 and -90° , and the principal value of $\cos^{-1}x$ lies between 90° and 180°. In numerical instances we shall usually suppose that the principal value is selected. **247.** If $\sin \theta = x$, we have $\cos \theta = \sqrt{1-x^2}$. Expressed in the inverse notation, these equations become $$\theta = \sin^{-1} x$$, $\theta = \cos^{-1} \sqrt{1 - x^2}$. In each of these two statements, θ has an infinite number of values; but, as the formulæ for the general values of the sine and cosine are not identical, we cannot assert that the equation $$\sin^{-1} x = \cos^{-1} \sqrt{1 - x^2}$$ is identically true. This will be seen more clearly from a numerical instance. If $x = \frac{1}{2}$, then $\sqrt{1 - x^2} = \frac{\sqrt{3}}{2}$. Here $\sin^{-1}x$ may be any one of the angles 30° , 150° , 390° , 510° , ...; and $\cos^{-1} \sqrt{1-x^2}$ may be any one of the angles 248. From the relations established in the previous chapters, we may deduce corresponding relations connecting the inverse functions. Thus in the identity $$\cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta},$$ let $\tan \theta = a$, so that $\theta = \tan^{-1} a$; then $$\cos(2\tan^{-1}a) = \frac{1-a^2}{1+a^2};$$ $$\therefore 2 \tan^{-1} a = \cos^{-1} \frac{1 - a^2}{1 + a^2}.$$ Similarly, the formula $$\cos 3\theta = 4\cos^3 \theta = 3\cos \theta$$ when expressed in the inverse notation becomes $3 \cos^{-1} a = \cos^{-1} (4a^3 - 3a)$, 249. To prove that $$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$$. Let and $$\tan^{-1} x = a$$, so that $\tan a = x$; $\tan^{-1} y = \beta$, so that $\tan \beta = y$. We require $a+\beta$ in the form of an inverse tangent. Now $$\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$ $$= \frac{x + y}{1 - xy};$$ $$\therefore a+\beta=\tan^{-1}\frac{x+y}{1-xy};$$ that is, $$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \frac{x+y}{1-xy}$$ By putting y=x, we obtain $$2 \tan^{-1} x = \tan^{-1} \frac{2x}{1 - x^2}$$. Note. It is useful to remember that $$\tan (\tan^{-1} x + \tan^{-1} y) =
\frac{x+y}{1-xy}.$$ Example 1. Prove that $$\tan^{-1} 5 - \tan^{-1} 3 + \tan^{-1} \frac{7}{9} = n\pi + \frac{\pi}{4}$$. The first side = $$\tan^{-1} \frac{5-3}{1+15} + \tan^{-1} \frac{7}{9}$$ = $\tan^{-1} \frac{1}{8} + \tan^{-1} \frac{7}{9}$ = $\tan^{-1} \frac{\frac{1}{8} + \frac{7}{9}}{1 - \frac{7}{72}} = \tan^{-1} 1$ = $n\pi + \frac{\pi}{7}$. Note. The value of n cannot be assigned until we have selected some particular values for the angles $\tan^{-1} 5$, $\tan^{-1} 3$, $\tan^{-1} \frac{7}{9}$. If we choose the *principal values*, then n=0. Example 2. Prove that $$\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$$. We may write this identity in the form $$\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{12}{13} = \frac{\pi}{2} - \sin^{-1}\frac{16}{65} = \cos^{-1}\frac{16}{65}$$. Let $\alpha = \sin^{-1}\frac{4}{5}$, so that $\sin \alpha = \frac{4}{5}$; and $$\beta = \cos^{-1} \frac{12}{13}$$, so that $\cos \beta = \frac{12}{13}$. We have to express $\alpha + \beta$ as an inverse cosine. Now $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$; whence by reading off the values of the functions from the figures in the margin, we have $$\cos (\alpha + \beta) = \frac{3}{5} \cdot \frac{12}{13} - \frac{4}{5} \cdot \frac{5}{13}$$ $$= \frac{16}{65};$$ $$\therefore \alpha + \beta = \cos^{-1} \frac{16}{65}.$$ It is sometimes convenient to work entirely in terms of the tangent or cotangent. Example 3. Prove that $$2 \cot^{-1} 7 + \cos^{-1} \frac{3}{5} = \csc^{-1} \frac{125}{117}.$$ The first side = $\cot^{-1} \frac{7^2 - 1}{2 \times 7} + \cot^{-1} \frac{3}{4}$ $$= \cot^{-1} \frac{24}{7} + \cot^{-1} \frac{3}{4}$$ $$= \cot^{-1} \frac{\frac{24}{7} \times \frac{3}{4} - 1}{\frac{24}{7} + \frac{3}{4}}$$ $$= \cot^{-1} \frac{\frac{44}{112}}{\frac{24}{112}} = \csc^{-1} \frac{125}{112}.$$ ### EXAMPLES. XIX. c. Prove the following statements: 1. $$\sin^{-1}\frac{12}{13} = \cot^{-1}\frac{5}{12}$$. 1. $$\sin^{-1}\frac{12}{13} = \cot^{-1}\frac{5}{12}$$. 2. $\csc^{-1}\frac{17}{8} = \tan^{-1}\frac{8}{15}$. $$\vee$$ 3. $\sec(\tan^{-1}x) = \sqrt{1+x^2}$. 4. $2\tan^{-1}\frac{1}{3} = \tan^{-1}\frac{3}{4}$. 4. $$2 \tan^{-1} \frac{1}{3} = \tan^{-1} \frac{3}{4}$$. 5. $$\tan^{-1}\frac{4}{3} - \tan^{-1}1 = \tan^{-1}\frac{1}{7}$$. 6. $$\tan^{-1}\frac{2}{11} + \cot^{-1}\frac{24}{7} = \tan^{-1}\frac{1}{2}$$. 7. $$\cot^{-1}\frac{4}{3} - \cot^{-1}\frac{15}{8} = \cot^{-1}\frac{84}{13}$$. 8. $$2 \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{4} = \tan^{-1} \frac{32}{43}$$. 9. $$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \tan^{-1}\frac{5}{6} + \tan^{-1}\frac{1}{11}$$. 10. $$\tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{8} + \tan^{-1}\frac{1}{18} = \cot^{-1}3$$. 11. $$\tan^{-1}\frac{3}{5} + \sin^{-1}\frac{3}{5} = \tan^{-1}\frac{27}{11}$$. 12. $$2 \cot^{-1} \frac{5}{4} = \tan^{-1} \frac{40}{9}$$. 13. $2 \tan^{-1} \frac{8}{15} = \sin^{-1} \frac{240}{289}$. 14. $$\sin(2\sin^{-1}x) = 2x\sqrt{1-x^2}$$. 15. $$\cos^{-1} x = 2 \sin^{-1} \sqrt{\frac{1-x}{2}}$$. 16. $$2 \tan^{-1} \sqrt{\frac{x}{a}} = \cos^{-1} \frac{a - x}{a + x}$$. 17. $$2 \tan^{-1} \frac{1}{8} + \tan^{-1} \frac{1}{7} + 2 \tan^{-1} \frac{1}{5} = \frac{\pi}{4}$$. 18. $$\sin^{-1} a - \cos^{-1} b = \cos^{-1} \{b\sqrt{1 - a^2} + a\sqrt{1 - b^2}\}.$$ 19. $$\sin^{-1}\frac{4}{5} + \cos^{-1}\frac{2}{\sqrt{5}} = \cot^{-1}\frac{2}{11}$$. 20. $$\cos^{-1}\frac{63}{65} + 2\tan^{-1}\frac{1}{5} = \sin^{-1}\frac{3}{5}$$. 21. $$\tan^{-1} m + \tan^{-1} n = \cos^{-1} \frac{1 - mn}{\sqrt{(1 + m^2)(1 + n^2)}}$$ 22. $$\cos^{-1}\frac{20}{29} - \tan^{-1}\frac{16}{63} = \cos^{-1}\frac{1596}{1885}$$. 23. $$\cos^{-1}\sqrt{\frac{2}{3}} - \cos^{-1}\frac{\sqrt{6+1}}{2\sqrt{3}} = \frac{\pi}{6}$$. 24. $$\tan(2\tan^{-1}x) = 2\tan(\tan^{-1}x + \tan^{-1}x^3)$$. 25. $$\tan^{-1} a = \tan^{-1} \frac{a-b}{1+ab} + \tan^{-1} \frac{b-c}{1+bc} + \tan^{-1} c.$$ **26.** If $$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$, prove that $x + y + z = xyz$. 27. If $$u = \cot^{-1} \sqrt{\cos \alpha} - \tan^{-1} \sqrt{\cos \alpha}$$, prove that $$\sin u = \tan^2 \frac{\alpha}{2}.$$ 250. We shall now shew how to solve equations expressed in the inverse notation. Example 1. Solve $$\tan^{-1} 2x + \tan^{-1} 3x = n\pi + \frac{3\pi}{4}$$. We have $$\tan^{-1} \frac{2x+3x}{1-6x^2} = n\pi + \frac{3\pi}{4}$$; $$\therefore \frac{2x + 3x}{1 - 6x^2} = \tan\left(n\pi + \frac{3\pi}{4}\right) = -1;$$ $$\therefore 6x^2 - 5x - 1 = 0$$, or $(6x + 1)(x - 1) = 0$; $$\therefore x=1, \text{ or } -\frac{1}{6}.$$ Example 2. Solve $\sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x$. By transposition, $\sin^{-1}(1-x) = \cos^{-1}x - \sin^{-1}x$. Let $\cos^{-1} x = \alpha$, and $\sin^{-1} x = \beta$; then $$\sin^{-1}(1-x) = \alpha - \beta;$$ $\therefore 1 - x = \sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta.$ But $\cos \alpha = x$, and therefore $\sin \alpha = \sqrt{1-x^2}$; also $\sin \beta = x$, and therefore $\cos \beta = \sqrt{1 - x^2}$; $$\therefore 1 - x = (1 - x^2) - x^2 = 1 - 2x^2;$$ $\therefore 2x^2 - x = 0$; whence $$x = 0$$, or $\frac{1}{2}$. ### EXAMPLES. XIX. d. Solve the equations: 1. $\sin^{-1} x = \cos^{-1} x$. 2. $$\tan^{-1} x = \cot^{-1} x$$. 3. $$\tan^{-1}(x+1) - \tan^{-1}(x-1) = \cot^{-1} 2$$. 4. $$\cot^{-1} x + \cot^{-1} 2x = \frac{3\pi}{4}$$. 5. $$\sin^{-1} x - \cos^{-1} x = \sin^{-1} (3x - 2)$$. 6. $$\cos^{-1} x - \sin^{-1} x = \cos^{-1} x_3/3$$. 7. $$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$. 8. $$2 \cot^{-1} 2 + \cos^{-1} \frac{3}{5} = \csc^{-1} x$$. 9. $$\tan^{-1} x + \tan^{-1} (1-x) = 2 \tan^{-1} \sqrt{x-x^2}$$. 10. $$\cos^{-1}\frac{1-a^2}{1+a^2} - \cos^{-1}\frac{1-b^2}{1+b^2} = 2\tan^{-1}x$$. 11. $$\sin^{-1}\frac{2a}{1+a^2} + \tan^{-1}\frac{2x}{1-x^2} = \cos^{-1}\frac{1-b^2}{1+b^2}$$ 12. $$\cot^{-1} \frac{x^2 - 1}{2x} + \tan^{-1} \frac{2x}{x^2 - 1} + \frac{4\pi}{3} = 0.$$ 13. Shew that we can express $$\sin^{-1}\frac{2ab}{a^2+b^2}+\sin^{-1}\frac{2cd}{c^2+d^2}$$ in the form $\sin^{-1}\frac{2xy}{x^2+y^2}$ where x and y are rational functions of a, b, c, d. 14. If $$\sin [2 \cos^{-1} {\cot (2 \tan^{-1} x)}] = 0$$, find x. 15. If $$2 \tan^{-1} (\cos \theta) = \tan^{-1} (2 \csc \theta)$$, find θ . 16. If $$\sin (\pi \cos \theta) = \cos (\pi \sin \theta)$$, shew that $$2\theta = \pm \sin^{-1} \frac{3}{4}.$$ 17. If $\sin(\pi \cot \theta) = \cos(\pi \tan \theta)$, and n is any integer, shew that either $\cot 2\theta$ or $\csc 2\theta$ is of the form $\frac{4n+1}{4}$. 18. If $\tan (\pi \cot \theta) = \cot (\pi \tan \theta)$, and n is any integer, shew that $$\tan \theta = \frac{2n+1}{4} \pm \frac{\sqrt{4n^2+4n-15}}{4}.$$ 19. Find all the positive integral solutions of $\tan^{-1} x + \cot^{-1} y = \tan^{-1} 3$. н. к. е. т. #### MISCELLANEOUS EXAMPLES. G. - 1. If the sines of the angles of a triangle are in the ratio of 4:5:6, shew that the cosines are in the ratio of 12:9:2. - 2. Solve the equations: (1) $$2\cos^3\theta + \sin^2\theta - 1 = 0$$; (2) $\sec^3\theta - 2\tan^2\theta = 2$. - 3. If $\tan \beta = 2 \sin a \sin \gamma \csc(a+\gamma)$, prove that $\cot a$, $\cot \beta$, $\cot \gamma$ are in arithmetical progression. - 4. In a triangle shew that $$4r(r_1+r_2+r_3)=2(bc+ca+ab)-(a^2+b^2+c^2).$$ 5. Prove that (1) $$\tan^{-1}\frac{1}{3} - \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{3}{11}$$; (2) $$\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} + \sin^{-1}\frac{36}{85} = \frac{\pi}{2}$$. 6. Find the greatest angle of the triangle whose sides are 185, 222, 259; given $\log 6 = .7781513$, $$L\cos 39^{\circ} 14' = 9.8890644$$, diff. for $1' = 1032$. 7. If $$\tan(a+\theta) = n \tan(a-\theta)$$, prove that $\frac{\sin 2\theta}{\sin 2a} = \frac{n-1}{n+1}$. - **8.** If in a triangle $8R^2 = a^2 + b^2 + c^2$, prove that one of the angles is a right angle. - 9. The area of a regular polygon of n sides inscribed in a circle is three-fourths of the area of the circumscribed regular polygon with the same number of sides: find n. - 10. ABCD is a straight sea-wall. From B the straight lines drawn to two boats are each inclined at 45° to the direction of the wall, and from C the angles of inclination are 15° and 75°. If BC = 400 yards, find the distance between the boats, and the distance of each from the sea-wall. #### CHAPTER XX. #### FUNCTIONS OF SUBMULTIPLE ANGLES. # 251. Trigonometrical ratios of $22\frac{1}{2}^{\circ}$ or $\frac{\pi}{8}$. From the identity $$2 \sin^2 22\frac{1}{2}^{\circ} = 1 - \cos 45^{\circ},$$ $$4 \sin^2 22\frac{1}{2}^{\circ} = 2 - 2 \cos 45^{\circ} = 2 - \sqrt{2};$$ we have $\therefore 2 \sin 22\frac{1}{2}^{\circ} = \sqrt{2 - \sqrt{2}} \qquad \dots (1).$ In like manner from $$2\cos^2 22\frac{1}{2}^{\circ} = 1 + \cos 45^{\circ},$$ we obtain $$2\cos 22\frac{1}{2}^{\circ} = \sqrt{2+\sqrt{2}}$$(2) In each of these cases the positive sign must be taken before the radical, since $22\frac{1}{2}^{\circ}$ is an acute angle. Again, $$\tan 22\frac{1}{2}^{\circ} = \frac{1-\cos 45^{\circ}}{\sin 45^{\circ}} = \csc 45^{\circ} - \cot 45^{\circ};$$ $\therefore \tan 22\frac{1}{2}^{\circ} = \sqrt{2-1}.$ **252.** We have seen that $2\cos\frac{\pi}{8} = \sqrt{2+\sqrt{2}}$; but $$4\cos^2\frac{\pi}{16} = 2 + 2\cos\frac{\pi}{8};$$ $$\therefore 4\cos^2\frac{\pi}{16} = 2 + \sqrt{2 + \sqrt{2}};$$ $$\therefore 2\cos\frac{\pi}{16} = \sqrt{2 + \sqrt{2 + \sqrt{2}}}.$$ Similarly, $$2\cos\frac{\pi}{32} = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2}}}};$$ and so on. **253.** Suppose that $\cos A = \frac{1}{2}$ and that it is required to find $\sin \frac{A}{2}$. $$\sin\frac{A}{2} = \sqrt{\frac{1 - \cos A}{2}} = \sqrt{\frac{1}{2}\left(1 - \frac{1}{2}\right)} = \sqrt{\frac{1}{4}} = \pm\frac{1}{2}.$$ This case differs from those of the two previous articles in that the datum is less precise. All we know of the angle A is contained in the statement that its cosine is equal to $\frac{1}{2}$, and without some further knowledge respecting A we cannot remove the ambiguity of sign in the
value found for $\sin \frac{A}{2}$. We now proceed to a more general discussion. **254.** Given $\cos A$ to find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ and to explain the presence of the two values in each case. From the identities $$2\sin^2\frac{A}{2} = 1 - \cos A$$, and $2\cos^2\frac{A}{2} = 1 + \cos A$, we have $$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$$, and $\cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}}$. Thus corresponding to one value of $\cos A$, there are two values for $\sin \frac{A}{2}$, and two values for $\cos \frac{A}{2}$. The presence of these two values may be explained as follows. If $\cos A$ is given and nothing further is stated about the angle A, all we know is that A belongs to a certain group of equicosinal angles. Let a be the smallest positive angle belonging to this group, then $A = 2n\pi \pm a$. Thus in finding $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ we are really finding the values of $$\sin \frac{1}{2}(2n\pi \pm a)$$ and $\cos \frac{1}{2}(2n\pi \pm a)$. Now $$\sin \frac{1}{2} (2n\pi \pm a) = \sin \left(n\pi \pm \frac{a}{2} \right)$$ $$= \sin n\pi \cos \frac{a}{2} \pm \cos n\pi \sin \frac{a}{2}$$ $$= \pm \sin \frac{a}{2},$$ for $\sin n\pi = 0$ and $\cos n\pi = \pm 1$. Again, $$\cos \frac{1}{2} (2n\pi \pm a) = \cos n\pi \cos \frac{a}{2} \mp \sin n\pi \sin \frac{a}{2}$$ = $\pm \cos \frac{a}{2}$. Thus there are two values for $\sin \frac{A}{2}$ and two values for $\cos \frac{A}{2}$ when $\cos A$ is given and nothing further is known respecting A. 255. Geometrical Illustration. Let a be the smallest positive angle which has the same cosine as A; then $$A = 2n\pi \pm a,$$ and we have to find the sine and cosine of $\frac{A}{2}$, that is of $$n\pi \pm \frac{a}{2}$$. Each of the angles denoted by this formula is bounded by one of the lines OP_1 , OP_2 , OP_3 , OP_4 . Now $$\begin{split} \sin XOP_2 &= \sin\frac{a}{2}, \quad \sin XOP_3 = -\sin\frac{a}{2}, \quad \sin XOP_4 = -\sin\frac{a}{2}, \\ \cos XOP_2 &= -\cos\frac{a}{2}, \quad \cos XOP_3 = -\cos\frac{a}{2}, \quad \cos XOP_4 = \cos\frac{a}{2}. \end{split}$$ Thus the values of $\sin \frac{A}{2}$ are $\pm \sin \frac{a}{2}$, and the values of $\cos \frac{A}{2}$ are $\pm \cos \frac{a}{2}$. 256. If cos A is given, and A lies between certain known limits, the ambiguities of sign in the formulæ of Art. 254 may be removed. Example. If $\cos A = -\frac{7}{25}$, and A lies between 450° and 540°, find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$. $$\sin\frac{A}{2} = \sqrt{\frac{1-\cos A}{2}} = \sqrt{\frac{1}{2}\left(1+\frac{7}{25}\right)} = \sqrt{\frac{16}{25}} = \pm\frac{4}{5};$$ $$\cos\frac{A}{2} = \sqrt{\frac{1+\cos A}{2}} = \sqrt{\frac{1}{2}\left(1-\frac{7}{25}\right)} = \sqrt{\frac{9}{25}} = \pm\frac{3}{5}.$$ Now $\frac{A}{2}$ lies between 225° and 270° , so that $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ are both negative; $\therefore \sin \frac{A}{2} = -\frac{4}{5}$, and $\cos \frac{A}{2} = -\frac{3}{5}$. 257. To find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ in terms of $\sin A$ and to explain the presence of four values in each case. By addition and subtraction, we obtain $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$; and since there is a double sign before each radical, there are *four* values for $\sin \frac{A}{2}$, and four values for $\cos \frac{A}{2}$ corresponding to one value of $\sin A$. The presence of these four values may be explained as follows. If $\sin A$ is given and nothing else is stated about the angle A all we know is that A belongs to a certain group of equi-sinal angles. Let a be the smallest positive angle belonging to this group, then $A = n\pi + (-1)^n a$. Thus in finding $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ we are really finding $$\sin \frac{1}{2} \{ n\pi + (-1)^n a \}, \text{ and } \cos \frac{1}{2} \{ n\pi + (-1)^n a \}.$$ First suppose n even and equal to 2m; then $$\sin \frac{1}{2} \{n\pi + (-1)^n a\} = \sin \left(m\pi + \frac{a}{2} \right)$$ $$= \sin m\pi \cos \frac{a}{2} + \cos m\pi \sin \frac{a}{2}$$ $$= \pm \sin \frac{a}{2},$$ since $$\sin m\pi = 0$$, and $\cos m\pi = \pm 1$. Next suppose n odd and equal to 2m+1; then $$\sin\frac{1}{2}\left\{n\pi + (-1)^n a\right\} = \sin\left(m\pi + \frac{\pi}{2} - \frac{a}{2}\right)$$ $$= \sin m\pi \cos\left(\frac{\pi}{2} - \frac{a}{2}\right) + \cos m\pi \sin\left(\frac{\pi}{2} - \frac{a}{2}\right)$$ $$= \pm \sin\left(\frac{\pi}{2} - \frac{a}{2}\right).$$ Thus we have four values for $\sin \frac{A}{2}$ when $\sin A$ is given and nothing further is known respecting A. In like manner it may be shewn that $$\cos \frac{A}{2}$$ has the four values $\pm \cos \frac{a}{2}$, $\pm \cos \left(\frac{\pi}{2} - \frac{a}{2}\right)$. 258. Geometrical Illustration. Let a be the smallest positive angle which has the same sine as A; then $$A = n\pi + (-1)^n a$$, and we have to find the sine and cosine of $\frac{1}{2}$, that is of $$\frac{1}{2} \{ n\pi + (-1)^n a \}.$$ If n is even and equal to 2m, this expression becomes $m\pi + \frac{a}{2}$. If n is odd and equal to 2m+1, the expression becomes $$m\pi + \left(\frac{\pi}{2} - \frac{a}{2}\right).$$ The angles denoted by the formula $m\pi + \frac{a}{2}$ are bounded by one of the lines OP_1 or OP_2 ; and those denoted by the formula $m\pi + \left(\frac{\pi}{2} - \frac{a}{2}\right)$ are bounded by one of the lines OP_3 or OP_4 . Now $$\begin{split} \sin XOP_1 &= \sin \frac{a}{2}\,;\\ &\sin XOP_2 = -\sin XOP_1 = -\sin \frac{a}{2}\,;\\ &\sin XOP_3 = \sin \left(\frac{\pi}{2} - \frac{a}{2}\right);\\ &\sin XOP_4 = -\sin XOP_3 = -\sin \left(\frac{\pi}{2} - \frac{a}{2}\right). \end{split}$$ Thus the values of $\sin \frac{A}{2}$ are $$\pm \sin \frac{a}{2}$$ and $\pm \sin \left(\frac{\pi}{2} - \frac{a}{2}\right)$. Similarly the values of $\cos \frac{A}{2}$ are $\pm \cos \frac{a}{2}$ and $\pm \cos \left(\frac{\pi}{2} - \frac{a}{2}\right)$. **259.** If in addition to the value of sin A we know that A lies between certain limits, the ambiguities of sign in equations (1) and (2) of Art. 257 may be removed. Example 1. Find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ in terms of $\sin A$ when A lies between 450° and 630° . In this case $\frac{A}{2}$ lies between 225° and 315°. From the adjoining figure it is evident that between these limits $\sin\frac{A}{2}$ is greater than $\cos\frac{A}{2}$ and is negative. $\therefore \sin \frac{A}{2} + \cos \frac{A}{2} = -\sqrt{1 + \sin A},$ and $$\sin\frac{A}{2} - \cos\frac{A}{2} = -\sqrt{1 - \sin A}.$$ $$\therefore 2\sin\frac{A}{2} = -\sqrt{1+\sin A} - \sqrt{1-\sin A},$$ and $$2\cos\frac{A}{2} = -\sqrt{1+\sin A} + \sqrt{1-\sin A}.$$ Example 2. Determine the limits between which A must lie in order that $$2\cos A = -\sqrt{1+\sin 2A} - \sqrt{1-\sin 2A}$$. The given relation is obtained by combining $$\sin A + \cos A = -\sqrt{1 + \sin 2A} \quad \dots (1),$$ and $$\sin A - \cos A = +\sqrt{1 - \sin 2A}$$(2). From (1), we see that of $\sin A$ and $\cos A$ the numerically greater is negative. From (2), we see that the cosine is the greater. Hence we have to choose limits between which $\cos A$ is numerically greater than $\sin A$ and is negative. From the figure we see that A lies between $2n\pi + \frac{\pi}{4}$ and $2n\pi + \frac{5\pi}{4}$. Example 3. Trace the changes of $\cos \theta - \sin \theta$ in sign and magnitude as θ increases from 0 to 2π . $$\cos \theta - \sin \theta = \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos \theta - \frac{1}{\sqrt{2}} \sin \theta \right)$$ $$= \sqrt{2} \left(\cos \theta \cos \frac{\pi}{4} - \sin \theta \sin \frac{\pi}{4} \right)$$ $$= \sqrt{2} \cos \left(\theta + \frac{\pi}{4} \right).$$ As θ increases from 0 to $\frac{\pi}{4}$, the expression is positive and decreases from 1 to 0. As θ increases from $\frac{\pi}{4}$ to $\frac{3\pi}{4}$, the expression is negative and increases numerically from 0 to $-\sqrt{2}$. As θ increases from $\frac{3\pi}{4}$ to $\frac{5\pi}{4}$, the expression is negative and decreases numerically from $-\sqrt{2}$ to 0. As θ increases from $\frac{5\pi}{4}$ to $\frac{7\pi}{4}$, the expression is positive and increases from 0 to $\sqrt{2}$. As θ increases from $\frac{7\pi}{4}$ to 2π , the expression is positive and decreases from $\sqrt{2}$ to 1. 260. To find the sine and cosine of 9°. Since $\cos 9^{\circ} > \sin 9^{\circ}$ and is positive, we have $$\sin 9^{\circ} + \cos 9^{\circ} = +\sqrt{1 + \sin 18^{\circ}},$$ and $\sin 9^{\circ} - \cos 9^{\circ} = -\sqrt{1 - \sin 18^{\circ}}$. $$\therefore \sin 9^{\circ} + \cos 9^{\circ} = +\sqrt{1 + \frac{\sqrt{5 - 1}}{4}} = +\frac{1}{2}\sqrt{3 + \sqrt{5}},$$ and $\sin 9^{\circ} - \cos 9^{\circ} = -\sqrt{1 - \frac{\sqrt{5} - 1}{4}} = -\frac{1}{2}\sqrt{5 - \sqrt{5}}.$ $$\therefore \sin 9^{\circ} = \frac{1}{4} \left\{ \sqrt{3 + \sqrt{5}} - \sqrt{5} - \sqrt{5} \right\},$$ and $$\cos 9^{\circ} = \frac{1}{4} \left\{ \sqrt{3 + \sqrt{5}} + \sqrt{5 - \sqrt{5}} \right\}$$ #### EXAMPLES. XX. a. 1. When A lies between -270° and -360° , prove that $$\sin\frac{A}{2} = -\sqrt{\frac{1-\cos A}{2}}.$$ - 2. If $\cos A = \frac{119}{169}$, find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ when A lies between 270° and 360°. - 3. If $\cos A = -\frac{161}{289}$, find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ when A lies between 540° and 630°. - **4.** Find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ in terms of $\sin A$ when A lies between 270° and 450°. - 5. Find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ in terms of $\sin A$ when $\frac{A}{2}$ lies between 225° and 315°. - **6.** Find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ in terms of $\sin A$ when A lies between -450° and -630° . - 7. If $\sin A = \frac{24}{25}$, find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ when A lies between 90° and 180°. - **8.** If $\sin A = -\frac{240}{289}$, find $\sin \frac{A}{2}$ and $\cos \frac{A}{2}$ when A lies between 270° and 360°. - 9. Determine the limits between which A must lie
in order that - (1) $2\sin A = \sqrt{1 + \sin 2A} \sqrt{1 \sin 2A}$; - (2) $2\cos A = -\sqrt{1+\sin 2A} + \sqrt{1-\sin 2A}$: - (3) $2 \sin A = -\sqrt{1 + \sin 2A} + \sqrt{1 \sin 2A}$. 10. If $A = 240^{\circ}$, is the following statement correct? $$2\sin\frac{A}{2} = \sqrt{1 + \sin A} - \sqrt{1 - \sin A}.$$ If not, how must it be modified? - 11. Prove that - (1) $\tan 7\frac{1}{2} = \sqrt{6} \sqrt{3} + \sqrt{2} 2$; - (2) $\cot 142\frac{1}{2}^{\circ} = \sqrt{2} + \sqrt{3} 2 \sqrt{6}$. - 12. Shew that sin 9° lies between '156 and '157. - 13. Prove that - (1) $2\sin 11^{\circ} 15' = \sqrt{2-\sqrt{2+\sqrt{2}}};$ - (2) $\tan 11^{\circ} 15' = \sqrt{4 + 2\sqrt{2} (\sqrt{2} + 1)}$. - 14. When θ varies from 0 to 2π trace the changes in sign and magnitude of - (1) $\cos \theta + \sin \theta$; (2) $\sin \theta \sqrt{3} \cos \theta$. - 15. When θ varies from 0 to π , trace the changes in sign and magnitude of - (1) $\frac{\tan\theta + \cot\theta}{\tan\theta \cot\theta};$ (2) $\frac{2\sin\theta \sin 2\theta}{2\sin\theta + \sin 2\theta}.$ - **261.** To find $\tan \frac{A}{2}$ when $\tan A$ is given and to explain the presence of the two values. Denote tan A by t; then $$t = \tan A = \frac{2 \tan \frac{A}{2}}{1 - \tan^2 \frac{A}{2}};$$:. $$t \tan^2 \frac{A}{2} + 2 \tan \frac{A}{2} - t = 0$$; $$\therefore \tan \frac{A}{2} = -\frac{2 \pm \sqrt{4 + 4t^2}}{2t} = -\frac{1 \pm \sqrt{1 + t^2}}{t}.$$ The presence of these two values may be explained as follows, If a be the smallest positive angle which has the given tangent, then $A = n\pi + a$, and we are really finding the value of $$\tan\frac{1}{2}(n\pi+a).$$ (1) Let n be even and equal to 2m; then $$\tan\frac{1}{2}(n\pi+a) = \tan\left(m\pi + \frac{a}{2}\right) = \tan\frac{a}{2}.$$ (2) Let n be odd and equal to 2m+1; then $\tan\frac{1}{2}(n\pi+a) = \tan\left(m\pi + \frac{\pi}{2} + \frac{a}{2}\right) = \tan\left(\frac{\pi}{2} + \frac{a}{2}\right).$ Thus $$\tan \frac{A}{2}$$ has the two values $\tan \frac{a}{2}$ and $\tan \left(\frac{\pi}{2} + \frac{a}{2}\right)$. Example 1. If $A = 170^{\circ}$, prove that $\tan \frac{A}{2} = \frac{-1 - \sqrt{1 + \tan^2 A}}{\tan A}$. Here $\frac{A}{2}$ is an acute angle, so that $\tan \frac{A}{2}$ must be positive. Hence in the formula $\frac{-1 \pm \sqrt{1 + \tan^2 A}}{\tan A}$ the numerator must have the same sign as the denominator. But when $A = 170^\circ$, $\tan A$ is negative, and therefore we must choose the sign which will make the numerator negative; thus $\tan \frac{A}{2} = \frac{-1 - \sqrt{1 + \tan^2 A}}{\tan A}$. Example 2. Given $\cos A = 6$, find $\tan \frac{A}{2}$, and explain the double answer. $$\begin{split} \tan^2\frac{A}{2} &= \frac{1 - \cos A}{1 + \cos A} = \frac{\cdot 4}{1 \cdot 6} = \frac{1}{4} \; ; \\ & \therefore \; \tan \frac{A}{2} = \pm \frac{1}{2} \; . \end{split}$$ Here all we know of the angle A is that it must be one of a group of equi-cosinal angles. Let α be the smallest positive angle of this group; then $A = 2n\pi \pm \alpha$. $$\therefore \, \tan \frac{A}{2} = \tan \left(n\pi \pm \frac{\alpha}{2} \right) = \tan \left(\pm \frac{\alpha}{2} \right) = \pm \tan \frac{\alpha}{2} \, .$$ Thus we have two values differing only in sign. Now 262. When any one of the functions of an acute angle A is given, we may in some cases conveniently obtain the functions of $\frac{A}{2}$, as in the following example. Example. Given $\cos A = \frac{b}{a}$, to find the functions of $\frac{A}{2}$. Make a right-angled triangle PQR in which the hypotenuse PQ=a, and base QR=b; then $$\cos PQR = \frac{QR}{PQ} = \frac{b}{a} = \cos A;$$ $$\therefore \angle PQR = A.$$ Produce RQ to S making QS = QP; .. $$\angle PSQ = \angle SPQ = \frac{1}{2} \angle PQR = \frac{A}{2}$$. $SR = a + b$, and $PR = \sqrt{a^2 - b^2}$, .. $PS^2 = (a + b)^2 + (a^2 - b^2) = 2a^2 + 2ab$; .. $PS = \sqrt{2a(a + b)}$. The functions of $\frac{A}{2}$ may now be written down in terms of the sides of the triangle PRS. 263. From Art. 125, we have $$\cos A = 4 \cos^3 \frac{A}{3} - 3 \cos \frac{A}{3}$$. Thus it appears that if $\cos A$ be given we have a *cubic* equation to find $\cos \frac{A}{3}$; so that $\cos \frac{A}{3}$ has *three* values. Similarly, from the equation $$\sin A = 3\sin\frac{A}{3} - 4\sin^3\frac{A}{3}$$ it appears that corresponding to one value of $\sin A$ there are three values of $\sin \frac{A}{3}$. It will be a useful exercise to prove these two statements analytically as in Arts, 254 and 257. In the next article we shall give a geometrical explanation for the case of the cosine. **264.** Given $\cos A$ to find $\cos \frac{A}{3}$, and to explain the presence of the three values. Let a be the smallest positive angle with the given cosine; then $A = 2n\pi \pm a$, and we have to find all the values of $$\cos\frac{1}{3}\left(2n\pi\pm a\right).$$ Consider the angles denoted by the formula $$\frac{1}{3} (2n\pi \pm a),$$ and ascribe to n in succession the values $0, 1, 2, 3, \ldots$ When n=0, the angles are $\pm \frac{a}{3}$, bounded by OP_1 and OQ_1 ; when n=1, the angles are $\frac{2\pi}{3} \pm \frac{a}{3}$, bounded by OP_2 and OQ_2 when n=2, the angles are $\frac{4\pi}{3} \pm \frac{a}{3}$, bounded by OP_3 and OQ_3 . By giving to n the values 3, 4, 5, ... we obtain a series of angles coterminal with those indicated in the figure. Thus OP_1 , OQ_1 , OP_2 , OQ_2 , OP_3 , OQ_3 bound all the angles included in the formula $\frac{1}{3}\left(2n\pi\pm a\right)$. Now $$\begin{aligned} \cos X \theta Q_1 &= \cos X \theta P_1 = \cos \frac{a}{3} \,; \\ \cos X \theta P_3 &= \cos X \theta Q_2 = \cos \left(\frac{2\pi}{3} - \frac{a}{3}\right) \,; \\ \cos X \theta Q_3 &= \cos X \theta P_2 = \cos \left(\frac{2\pi}{3} + \frac{a}{3}\right). \end{aligned}$$ Thus the values of $\cos \frac{1}{3}$ are $\cos \frac{a}{3}$, $\cos \frac{2\pi + a}{3}$, $\cos \frac{2\pi - a}{3}$. ## EXAMPLES. XX. b. 1. If $A = 320^{\circ}$, prove that $$\tan\frac{A}{2} = \frac{-1 + \sqrt{1 + \tan^2 A}}{\tan A}.$$ 2. Shew that $$\tan A = -\frac{1 + \sqrt{1 + \tan^2 2A}}{\tan 2A}$$ when $A = 110^\circ$. - 3. Find $\tan A$ when $\cos 2A = \frac{12}{13}$ and A lies between 180° and 225°. - **4.** Find $\cot \frac{A}{2}$ when $\cos A = -\frac{4}{5}$ and A lies between 180° and 270°. - 5. If $\cot 2\theta = \cot 2a$, shew that $\cot \theta$ has the two values $\cot a$ and $-\tan a$. - 6. Given that $\sin \theta = \sin a$, shew that the values of $\sin \frac{\theta}{3}$ are $$\sin\frac{a}{3}$$, $\sin\frac{\pi-a}{3}$, $-\sin\frac{\pi+a}{3}$. 7. If $\tan \theta = \tan a$, shew that the values of $\tan \frac{\theta}{3}$ are $$\tan \frac{a}{3}$$, $\tan \frac{\pi+a}{3}$, $-\tan \frac{\pi-a}{3}$. 8. Given that $\cos 3\theta = \cos 3a$, shew that the values of $\sin \theta$ are $$\pm \sin a$$, $-\sin \left(\frac{\pi}{3} \pm a\right)$, $\sin \left(\frac{2\pi}{3} \pm a\right)$. 9. Given that $\sin 3\theta = \sin 3a$, shew that the values of $\cos \theta$ are $$\pm \cos a$$, $\cos \left(\frac{\pi}{3} \pm a\right)$, $\cos \left(\frac{2\pi}{3} \pm a\right)$. ## CHAPTER XXI. #### LIMITS AND APPROXIMATIONS. **265.** If θ be the radian measure of an angle less than a right angle, to show that $\sin \theta$, θ , $\tan \theta$ are in ascending order of magnitude. Let the angle θ be represented by AOP. With centre O and radius OA describe a circle. Draw PT at right angles to OP to meet OA produced in T, and join PA. Let r be the radius of the circle. Area of $$\triangle AOP = \frac{1}{2}AO$$, $OP \sin AOP = \frac{1}{2}r^2 \sin \theta$; area of sector $$AOP = \frac{1}{2} r^2 \theta$$; area of $$\Delta OPT\!=\!\frac{1}{2}\;OP$$, $PT\!=\!\frac{1}{2}\;r$, $r\tan\theta=\!\frac{1}{2}\;r^2\tan\theta.$ But the areas of the triangle AOP, the sector AOP, and the triangle OTP are in ascending order of magnitude: that is, $$\frac{1}{2}r^2\sin\theta$$, $\frac{1}{2}r^2\theta$, $\frac{1}{2}r^2\tan\theta$ are in ascending order of magnitude; $\therefore \sin \theta$, θ , $\tan \theta$ are in ascending order of magnitude. **266.** When θ is indefinitely diminished, to prove that $\frac{\sin \theta}{\theta}$ and $\frac{\tan \theta}{\Delta}$ each have unity for their limit. In the last article, we have proved that $\sin \theta$, θ , $\tan \theta$ are in ascending order of magnitude. Divide each of these quantities by $\sin \theta$; then $1, \frac{\theta}{\sin \theta}, \frac{1}{\cos \theta}$ are in ascending order of magnitude; that is, $\frac{\theta}{\sin \theta}$ lies between 1 and $\sec \theta$. But when θ is indefinitely diminished, the limit of $\sec \theta$ is 1; hence the limit of $\frac{\theta}{\sin \theta}$ is 1; that is, the limit of $\frac{\sin \theta}{\theta}$ is unity. Again, by dividing each of the quantities $\sin \theta$, θ , $\tan \theta$ by $\tan \theta$, we find that $\cos \theta$, $\frac{\theta}{\tan \theta}$, 1 are in ascending order of magnitude. Hence the limit of $\frac{\tan \theta}{\theta}$ is unity. These results are often written concisely in the forms $$\underset{\theta=0}{Lt.} \left(\frac{\sin \theta}{\theta} \right) = 1, \qquad \underset{\theta=0}{Lt.} \left(\frac{\tan \theta}{\theta} \right) = 1.$$ Example. Find the limit of $u \sin \frac{\theta}{n}$ when $n = \infty$. $$n \sin \frac{\theta}{n} = \theta \cdot \frac{n}{\theta} \cdot \sin \frac{\theta}{n} = \theta \left(\sin \frac{\theta}{n} \div \frac{\theta}{n} \right);$$ but since $\frac{\theta}{n}$ is indefinitely small, the limit of $\sin \frac{\theta}{n} \div \frac{\theta}{n}$ is unity; $$\therefore Lt. \left(n \sin \frac{\theta}{n}\right) = \theta.$$ Similarly $Lt_{n}\left(n\tan\frac{\theta}{n}\right) = \theta.$ 267. It is important to remember that the conclusions of the foregoing articles only hold when the angle is expressed in radian measure. If any other system of measurement is used, the results will require modification. Example. Find the value of Lt, $\left(\frac{\sin
n^{\circ}}{n}\right)$. Let θ be the number of radians in n° ; then $$\frac{n}{180} = \frac{\theta}{\pi}, \text{ and } n = \frac{180\theta}{\pi}; \text{ also } \sin n^{\circ} = \sin \theta;$$ $$\therefore \frac{\sin n^{\circ}}{n} = \frac{\pi \sin \theta}{180\theta} = \frac{\pi}{180} \cdot \frac{\sin \theta}{\theta}.$$ When n is indefinitely small, θ is indefinitely small; $$\therefore Lt. \left(\frac{\sin n^{\circ}}{n}\right) = \frac{\pi}{180} \cdot Lt. \left(\frac{\sin \theta}{\theta}\right);$$ $$\therefore Lt. \left(\frac{\sin n^{\circ}}{n}\right) = \frac{\pi}{180} .$$ 268. When θ is the radian measure of a very small angle, we have shewn that $$\frac{\sin \theta}{\theta} = 1$$, $\cos \theta = 1$, $\frac{\tan \theta}{\theta} = 1$; that is, $$\sin \theta = \theta$$, $\cos \theta = 1$, $\tan \theta = \theta$. Hence $r \tan \theta = r\theta$, and therefore in the figure of Art. 265, the tangent PT is equal to the arc PA, when $\angle AOP$ is very small. In Art. 270, it will be shewn that these results hold so long as θ is so small that its square may be neglected. When this is the case, we have $$\sin (a + \theta) = \sin a \cos \theta + \cos a \sin \theta$$ $$= \sin a + \theta \cos a;$$ $$\cos (a + \theta) = \cos a \cos \theta - \sin a \sin \theta$$ $$= \cos a - \theta \sin a.$$ Example 1. The inclination of a railway to the horizontal plane is 52' 30", find how many feet it rises in a mile. Let OA be the horizontal plane, and OP a mile of the railway. Draw PN perpendicular to OA. Let $$PN = x$$ feet, $\angle PON = \theta$; O N A then $$\frac{PN}{OP} = \sin \theta = \theta$$ approximately. But $\theta = \text{radian measure of } 52' \ 30'' = \frac{52\frac{1}{2}}{60} \times \frac{\pi}{180} = \frac{7}{8} \times \frac{\pi}{180}$; $$\therefore \frac{x}{1760 \times 3} = \frac{7}{8} \times \frac{22}{7} \times \frac{1}{180};$$ $$\therefore x = \frac{1760 \times 3 \times 22}{8 \times 180} = \frac{242}{3} = 80\frac{2}{3}.$$ Thus the rise is $80\frac{2}{3}$ feet. Example 2. A pole 6 ft. long stands on the top of a tower 54 ft. high: find the angle subtended by the pole at a point on the ground which is at a distance of 180 yds, from the foot of the tower. Let A be the point on the ground, BC the tower, CD the pole. Let $$\angle BAC = \alpha$$, $\angle CAD = \theta$; then $\tan \alpha = \frac{BC}{4R} = \frac{54}{540} = \frac{1}{10}$; $$\tan (\alpha + \theta) = \frac{BD}{AB} = \frac{60}{540} = \frac{1}{9}$$. But $\tan (\alpha + \theta) = \frac{\tan \alpha + \tan \theta}{1 - \tan \alpha \tan \theta} = \frac{\tan \alpha + \theta}{1 - \theta \tan \alpha}$ approximately; $$\therefore \frac{1}{9} = \frac{\frac{1}{10} + \theta}{1 - \frac{\theta}{10}} = \frac{1 + 10\theta}{10 - \theta} :$$ whence $\theta = \frac{1}{91}$; that is, the angle is $\frac{1}{91}$ of a radian, and therefore contains $\frac{1}{91} \times \frac{180}{\pi}$ degrees. On reduction, we find that the angle is 37' 46" nearly. **269.** If θ be the number of radians in an acute angle, to prove that $$\cos \theta > 1 - \frac{\theta^2}{2}$$, and $\sin \theta > \theta - \frac{\theta^3}{4}$. Since $$\cos \theta = 1 - 2 \sin^2 \frac{\theta}{2}$$, and $\sin \frac{\theta}{2} < \frac{\theta}{2}$: $$\therefore \cos \theta > 1 - 2\left(\frac{\theta}{2}\right)^2;$$ that is, $$\cos \theta > 1 - \frac{\theta^2}{2}$$. Again, $$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} = 2 \tan \frac{\theta}{2} \cos^2 \frac{\theta}{2}$$; but $$\tan \frac{\theta}{2} > \frac{\theta}{2}$$; $$\therefore \sin \theta > 2 \frac{\theta}{2} \cos^2 \frac{\theta}{2};$$ $$\therefore \sin \theta > \theta \left(1 - \sin^2 \frac{\theta}{2} \right).$$ But $\sin \frac{\theta}{2} < \frac{\theta}{2}$, and therefore $$1 - \sin^2 \frac{\theta}{2} > 1 - \left(\frac{\theta}{2}\right)^2;$$ $$\therefore \sin \theta > \theta \left\{1 - \left(\frac{\theta}{2}\right)^2\right\};$$ $$\theta^3$$ $$\therefore \sin \theta > \theta - \frac{\theta^3}{4}.$$ 270. From the propositions established in this chapter, it follows that if θ is an acute angle, $\cos \theta$ lies between 1 and $1 - \frac{\theta^2}{2}$, and $\sin \theta$ lies between θ and $\theta - \frac{\theta^3}{4}$. Thus $\cos \theta = 1 - k e^2$ and $\sin \theta = \theta - k' \theta^3$, where k and k' are proper fractions less than $\frac{1}{2}$ and $\frac{1}{4}$ respectively. Hence if θ be so small that its square can be neglected, $\cos \theta = 1$, $\sin \theta = \theta$. Example. Find the approximate value of sin 10". The circular measure of 10" is $\frac{10\pi}{180\times60\times60}$ or $\frac{\pi}{64800}$; $$\therefore \sin 10^{\circ} < \frac{\pi}{64800} \text{ and } > \frac{\pi}{64800} - \frac{1}{4} \left(\frac{\pi}{64800}\right)^3.$$ But $\frac{\pi}{64800} = \frac{3.1415926535...}{64800} = .000048481368.....;$ $$\therefore \ \frac{\pi}{64800} < \cdot 00005 \ \ \text{and} \ \ \left(\frac{\pi}{64800}\right)^3 < \cdot 000000000000125 \ ;$$ $$\therefore \sin 10^{\prime\prime} < \frac{\pi}{64800} \text{ and } > \frac{\pi}{64800} - \frac{1}{4} (\cdot 000000000000125).$$ Hence to 12 places of decimals, $$\sin 10'' = \frac{\pi}{64800} = .000048481368....$$ 271. To shew that when n is an indefinitely large integer, the limit of $\cos \frac{\theta}{2} \cos \frac{\theta}{4} \cos \frac{\theta}{2} \dots \cos \frac{\theta}{2n} = \frac{\sin \theta}{4}$. We have $$\sin \theta = 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$ $= 2^{3} \sin \frac{\theta}{4} \cos \frac{\theta}{4} \cos \frac{\theta}{2}$ $= 2^{3} \sin \frac{\theta}{8} \cos \frac{\theta}{4} \cos \frac{\theta}{4} \cos \frac{\theta}{2}$ $$= 2^n \sin \frac{\theta}{2^n} \cos \frac{\theta}{2^n} \dots \cos \frac{\theta}{8} \cos \frac{\theta}{4} \cos \frac{\theta}{2}.$$ $$\therefore \cos \frac{\theta}{2} \cos \frac{\theta}{4} \cos \frac{\theta}{8} \dots \cos \frac{\theta}{2^n} = \frac{\sin \theta}{2^n \sin \frac{\theta}{2^n}}.$$ But the limit of $2^n \sin \frac{\theta}{2^n}$ is θ , and thus the proposition is established. [See Art. 266.] **272.** To show that $\frac{\sin \theta}{\theta}$ continually decreases from 1 to $\frac{2}{\pi}$ as θ continually increases from 0 to $\frac{\pi}{2}$. We shall first shew that the fraction $$\frac{\sin \theta}{\theta} - \frac{\sin (\theta + h)}{\theta + h}$$ is positive, h denoting the radian measure of a small positive angle. This fraction = $$\frac{(\theta + h)\sin\theta - \theta(\sin\theta\cos h + \cos\theta\sin h)}{\theta(\theta + h)}$$ $$= \frac{\theta\sin\theta(1 - \cos h) + (h\sin\theta - \theta\cos\theta\sin h)}{\theta(\theta + h)}.$$ Now $\tan \theta > \theta$, that is $\sin \theta > \theta \cos \theta$, and $h > \sin h$; $$\therefore h \sin \theta > \theta \cos \theta \sin h$$. Also $1-\cos h$ is positive; hence the numerator is positive, and therefore the fraction is positive; $$\therefore \frac{\sin(\theta+h)}{\theta+h} < \frac{\sin\theta}{\theta};$$ $\therefore \frac{\sin \theta}{\theta}$ continually decreases as θ continually increases. When $\theta = 0$, $\frac{\sin \theta}{\theta} = 1$; and when $\theta = \frac{\pi}{2}$, $\frac{\sin \theta}{\theta} = \frac{2}{\pi}$. Thus the proposition is established. ## EXAMPLES. XXI. a. In this Exercise take $$\pi = \frac{22}{7}$$. - 1. A tower 44 feet high subtends an angle of 35' at a point A on the ground: find the distance of A from the tower. - 2. From the top of a wall 7 ft. 4 in. high the angle of depression of an object on the ground is 24'30": find its distance from the wall. - 3. Find the height of an object whose angle of elevation at a distance of 840 yards is 1° 30′. - 4. Find the angle subtended by a pole 10 ft. 1 in. high at a distance of a mile. - ↑ 5. Find the angle subtended by a circular target 4 feet in diameter at a distance of 1000 yards. - 6. Taking the diameter of a penny as 1.25 inches, find at what distance it must be held from the eye so as just to hide the moon, supposing the diameter of the moon to be half a degree. - 7. Find the distance at which a globe 11 inches in diameter subtends an angle of 5'. - 8. Two places on the same meridian are 11 miles apart: find the difference in their latitudes, taking the radius of the earth as 3960 miles. - 9. A man 6 ft. high stands on a tower whose height is 120 ft.: shew that at a point 24 ft. from the tower the man subtends an angle of 31.5′ nearly. - 10. A flagstaff standing on the top of a cliff 490 feet high subtends an angle of '04 radians at a point 980 feet from the base of the cliff: find the height of the flagstaff. - 11. When n=0, find the limit of $$(1) \quad \frac{\sin n'}{n}; \qquad (2) \quad \frac{\sin n''}{n}.$$ 12. When $n = \infty$, find the limit of $\frac{1}{2}nr^2\sin\frac{2\pi}{n}$. When $\theta = 0$, find the limit of 13. $$\frac{1-\cos\theta}{\theta\sin\theta}$$. 14. $\frac{m\sin m\theta - n\sin n\theta}{\tan m\theta + \tan n\theta}$. - 15. If $\theta = 01$ of a radian, calculate $\cos\left(\frac{\pi}{3} + \theta\right)$. - 16. Find the value of sin 30° 10′, 30″. - 17. Given $\cos\left(\frac{\pi}{3} + \theta\right) = 49$, find the sexagesimal value of θ . # Distance and Dip of the Visible Horizon. 273. Let A be a point above the earth's surface, BCD a section of the earth by a plane passing through its centre E and A. Let AE cut the circumference in B and D. From A draw AC to touch the circle BCD in C, and join EC. Draw AF at right angles to AD; then $\angle FAC$ is called the **dip of the horizon** as seen from A. Thus the dip of the horizon is the angle of depression of any point on the horizon visible from A. 274. To find the distance of the horizon. In the figure of the last article, let $$AB=h$$, $EB=ED=r$, $AC=x$; then by Euc. III. 36, $AC^2 = AB \cdot AD$; that is, $$x^2 = h(2r+h) = 2hr + h^2$$. For ordinary altitudes h^2 is very small in comparison with 2hr; hence approximately $$x^2 = 2hr$$ and $x = \sqrt{2hr}$. In this formula, suppose the measurements are made in *miles*,
and let a be the number of *feet* in AB; then $$a = 1760 \times 3 \times h$$. By taking r=3960, we have $$x^2 = \frac{2 \times 3960 \times a}{1760 \times 3} = \frac{3a}{2}$$. Thus we have the following rule: Twice the square of the distance of the horizon measured in miles is equal to three times the height of the place of observation measured in feet. Hence a man whose eye is 6 feet from the ground can see to a distance of 3 miles on a horizontal plane. Example. The top of a ship's mast is $66\frac{2}{3}$ ft. above the sea-level, and from it the lamp of a lighthouse can just be seen. After the ship has sailed directly towards the lighthouse for half-an-hour the lamp can be seen from the deck, which is 24 ft. above the sea. Find the rate at which the ship is sailing. Let L denote the lamp, D and E the two positions of the ship, B the top of the mast, C the point on the deck from which the lamp is seen; then LCB is a tangent to the earth's surface at A. [In problems like this some of the lines must necessarily be greatly out of proportion.] Let AB and AC be expressed in miles; then since $DB = 66\frac{2}{3}$ feet and EC = 24 feet, we have by the rule $$AB^2 = \frac{3}{2} \times 66\frac{2}{3} = 100;$$ $\therefore AB = 10 \text{ miles.}$ $$AC^2 = \frac{3}{2} \times 24 = 36;$$ $$\therefore AC = 6$$ miles. But the angles subtended by AB and AC at O the centre of the earth are very small; $$\therefore$$ are $AD = AB$, and are $AC = AE$. [Art. 268.] \therefore are $DE = AD - AE = AB - AC = 4$ miles. Thus the ship sails 4 miles in half-an-hour, or 8 miles per hour. 275. Let θ be the number of radians in the dip of the horizon; then with the figure of Art. 273, we have $$\cos \theta = \frac{EC}{EA} = \frac{r}{h+r} = \left(1 + \frac{h}{r}\right)^{-1};$$ $$\therefore 1 - 2\sin^2\frac{\theta}{2} = 1 - \frac{h}{r} + \frac{h^2}{r^2} - \dots;$$ $$\therefore 2\sin^2\frac{\theta}{2} = \frac{h}{r} - \frac{h^2}{r^2} + \dots.$$ Since θ and $\frac{h}{r}$ are small, we may replace $\sin \frac{\theta}{2}$ by $\frac{\theta}{2}$ and neglect the terms on the right after the first. Thus $$\frac{\theta^2}{2} = \frac{h}{r}$$, or $\theta = \sqrt{\frac{2h}{r}}$. Let N be the number of degrees in $\hat{\theta}$ radians; then $$N = \frac{180\theta}{\pi} = \frac{180}{\pi} \sqrt{\frac{2h}{r}}.$$ Now $\sqrt{r}=63$ nearly; hence we have approximately $$N = \frac{180 \times 7 \times \sqrt{2h}}{22 \times 63},$$ or $$N = \frac{10}{11} \sqrt{2}h,$$ a formula connecting the dip of the horizon in degrees and the height of the place of observation in miles. ## EXAMPLES. XXI. b. Here $$\pi = \frac{22}{7}$$, and radius of earth = 3960 miles. Find the greatest distance at which the lamp of a lighthouse can be seen, the light being 96 feet above the sealevel. If the lamp of a lighthouse begins to be seen at a distance of 15 miles, find its height above the sea-level. - 3. The tops of the masts of two ships are 32 ft. 8 in. and 42 ft. 8 in. above the sea-level: find the greatest distance at $\sqrt{}$ which one mast can be seen from the other. - Find the height of a ship's mast which is just visible at a distance of 20 miles from a point on the mast of another ship which is 54 ft. above the sea-level. - From the mast of a ship 73 ft. 6 in, high the lamp of a lighthouse is just visible at a distance of 28 miles: find the height of the lamp. - Find in minutes and seconds the dip of the horizon from a hill 2640 feet high. 7. Along a straight coast there are lighthouses at intervals of 24 miles: find at what height the lamp must be placed so that the light of one at least may be visible at a distance of $3\frac{1}{2}$ miles from any point of the coast. **8.** From the top of a mountain the dip of the horizon is 1_{11}^{9} °: find its height in feet. 9. The distance of the horizon as seen from the top of a hill is 30.25 miles: find the height of the hill and the dip of the horizon, 10. If x miles be the distance of the visible horizon and N degrees the dip, shew that $$N = \frac{x}{66} \sqrt{\frac{10}{11}}.$$ When $\theta=0$, find the limit of 11. $$\frac{\sin 4\theta \cot \theta}{\text{vers } 2\theta \cot^2 2\theta}.$$ 12. $$\frac{1-\cos \theta + \sin \theta}{1-\cos \theta - \sin \theta}.$$ 13. When $\theta = a$, find the limit of (1) $$\frac{\sin \theta - \sin a}{\theta - a}$$; (2) $\frac{\cos \theta - \cos a}{\theta - a}$. 14. Two sides of a triangle are 31 and 32, and they include a right angle: find the other angles. 15. A person walks directly towards a distant object P, and observes that at the three points A, B, C, the elevations of P are a, 2a, 3a respectively: shew that AB = 3BC nearly. 16. Show that $\frac{\tan \theta}{\theta}$ continually increases from 1 to ∞ as θ continually increases from 0 to $\frac{\pi}{2}$. #### CHAPTER XXII. #### GEOMETRICAL PROOFS. **276.** To find the expansion of $\tan (A+B)$ geometrically. Let $\angle LOM = A$, and $\angle MON = B$; then $\angle LON = A + B$. In ON take any point P, and draw PQ and PR perpendicular to OL and OM respectively. Also draw RS and RT perpendicular to OL and PQ respectively. $$\tan (A+B) = \frac{PQ}{\partial Q} = \frac{RS + PT}{\partial S - TR}$$ $$= \frac{\frac{RS}{\partial S} + \frac{PT}{\partial S}}{1 - \frac{TR}{\partial S}} = \frac{\frac{RS}{\partial S} + \frac{PT}{\partial S}}{1 - \frac{TR}{TP} \cdot \frac{TP}{\partial S}}$$ Now $$\frac{RS}{OS}$$ = tan A, and $\frac{TR}{TP}$ = tan A; also the triangles ROS and TPR are similar, and therefore $$\frac{TP}{OS} = \frac{PR}{OR} = \tan B$$. $$\therefore \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}.$$ In like manner, with the help of the figure on page 95, we may obtain the expansion of $\tan (A - B)$ geometrically. 277. To prove geometrically the formulæ for transformation of sums into products. Let $\angle EOF$ be denoted by A, and $\angle EOG$ by B. With centre O and any radius describe an arc of a circle meeting OG in H and OF in K. Bisect $\angle KOH$ by OL; then OL bisects HK at right angles. Draw KP, HQ, LR perpendicular to OE, and through L draw MLN parallel to OE meeting KP in M and QH in N. It is easy to prove that the triangles MKL and NHL are equal in all respects, so that KM = NH, ML = LN, PR = RQ. Also $\angle GOF = A - B$, and therefore $$\angle HOL = \angle KOL = \frac{A - B}{2};$$ $$\therefore \angle EOL = B + \frac{A - B}{2} = \frac{A + B}{2}.$$ $$\sin A + \sin B = \frac{KP}{OK} + \frac{HQ}{OH} = \frac{KP + HQ}{OK}$$ $$= \frac{(KM + LR) + (LR - NH)}{OK} = 2\frac{LR}{OK};$$ $$\therefore \sin A + \sin B = 2\frac{LR}{\partial L} \cdot \frac{\partial L}{\partial K} = 2 \sin R\partial L \cos K\partial L$$ $$= 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} \cdot \frac{1}{2} \frac{1}$$ since $\angle LKM = \text{comp}^t$ of $\angle KLM = \angle MLO = \angle LOE = \frac{A+B}{2}$. $$\cos B - \cos A = \frac{\partial Q}{\partial H} - \frac{\partial P}{\partial K} = \frac{\partial Q - \partial P}{\partial K}$$ $$= \frac{(\partial R + RQ) - (\partial R - PR)}{\partial K} = 2 \frac{PR}{\partial K} = 2 \frac{ML}{\partial K}$$ $$= 2 \frac{ML}{KL} \cdot \frac{KL}{\partial K} = 2 \sin LKM \sin K\partial L$$ $$= 2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}.$$,2A 278. Geometrical proof of the 2.4 formula. Let BPD be a semicircle, BD the diameter, C the centre. On the circumference, take any point P, and join PB, PC, PD. Draw PN perpendicular to BD. Let $\angle PBD = A$, then $$\angle PCD = 2A$$. $$\sin 2A = \frac{PN}{CP} = \frac{2PN}{2CP} = \frac{2PN}{BD} = 2\frac{PN}{BP} \cdot \frac{BP}{BD}$$ $$= 2\sin PBN\cos PBD$$ $$= 2\sin A\cos A.$$ $$\cos 2A = \frac{CN}{CP} = \frac{2CN}{BD} = \frac{CN + CN}{BD}$$ $$= \frac{(BN - BC) + (CD - ND)}{BD} = \frac{BN - ND}{BD}$$ $$= \frac{BN}{BP} \cdot \frac{BP}{BD} - \frac{ND}{PD} \cdot \frac{PD}{BD}$$ $$= \cos A \cdot \cos A - \sin A \cdot \sin A$$ $$= \cos^2 A - \sin^2 A \cdot$$ $$\cos 2A = \frac{CN}{CP} = \frac{CD - DN}{CP} = 1 - \frac{DN}{CP} = 1 - \frac{2DN}{BD}$$ $$= 1 - 2\frac{DN}{DP} \cdot \frac{DP}{BD} = 1 - 2\sin A \cdot \sin A$$ $$= 1 - 2\sin^2 A.$$ $$\cos 2A = \frac{CN}{CP} = \frac{BN - BC}{CP} = \frac{BN}{CP} - 1 = \frac{2BN}{BD} - 1$$ $$= 2\frac{BN}{BP} \cdot \frac{BP}{BD} - 1 = 2\cos A \cdot \cos A - 1$$ $$= 2\cos^2 A - 1.$$ $$\tan 2A = \frac{PN}{CN} = \frac{2PN}{2CN} = \frac{2PN}{BN - ND}$$ $$= \frac{\frac{2}{BN}}{1 - \frac{ND}{BN}} = \frac{\frac{2}{BN}}{1 - \frac{ND}{PN} - \frac{PN}{BN}}$$ $$= \frac{2 \tan A}{1 - \tan A}$$ $$= \frac{2 \tan A}{1 - \tan^2 A}.$$ ## 279. To find the value of sin 18° geometrically. Let ABD be an isosceles triangle in which each angle at the base BD is double the vertical angle A; then $$A + 2A + 2A = 180^{\circ}$$ and therefore $A = 36^{\circ}$. Bisect $\angle BAD$ by AE; then AE bisects BD at right angles; $$\therefore$$ $\angle BAE = 18^{\circ}$. Thus $$\sin 18^{\circ} = \frac{BE}{AB} = \frac{x}{a},$$ where $$AB = a$$, and $BE = x$. From the construction given in Euc. 1v. 10, $$AC = BD = 2BE = 2.r.$$ and $$AB \cdot BC = AC^{2};$$ ∴ $a(a-2x) = (2x)^{2};$ ∴ $4x^{2} + 2ax - a^{2} = 0;$ $$\therefore \ \ x = \frac{-2a \pm \sqrt{20a^2}}{8} = \frac{-1 \pm \sqrt{5}}{4} \ a.$$ The upper sign must be taken, since x is positive. Thus $$\sin 18^{\circ} = \frac{\sqrt{5-1}}{4}$$. ## Proofs by Projection. **280.** DEFINITION. If from any two points A and B, lines AC and BD are drawn perpendicular to ∂X , then the intercept CD is called the **projection** of AB upon ∂X . Through A draw AE parallel to OX; then $$CD = AE = AB \cos BAE$$; that is, $$CD = AB \cos a$$ where a is the angle of inclination of the lines AB and OX. - 281. To shew that the projection of a straight line is equal to the projection of an equal and parallel straight line drawn from a fixed point. - Let AB be any straight line, O a fixed point, which we shall call the origin, OP a straight line equal and parallel to AB. - Let CD and OM be the projections of AB and OP upon any straight line OX drawn through the origin. Draw AE
parallel to OX. The two triangles AEB and OMP are identically equal; $$\therefore OM = AE = CD$$; that is, projection of OP = projection of AB. **282.** In the figure of the last article, two straight lines OP and OQ can be drawn from O equal and parallel to AB; it is therefore necessary to have some means of fixing the direction in which the line from O is to be drawn. Accordingly it is agreed to consider that the direction of a line is fixed by the order of the letters. Thus AB denotes a line drawn from A to B, and BA denotes a line drawn from B to A. Hence OP denotes a line drawn from the origin parallel to AB, and ∂Q denotes a line drawn from the origin parallel to BA. Similarly the direction of a projected line is fixed by the order of the letters. Thus CD is drawn to the right from C to D and is positive, while DC is drawn to the left from D to C and is negative. Hence in sign as well as in magnitude $$OM = CD$$, and $ON = DC$: projection of OP = projection of AB, that is, and projection of Q = projection of BA. Thus the projection of a straight line can be represented both in sign and magnitude by the projection of an equal and parallel straight line drawn from the origin. 283. Whatever be the direction of AB, the line OP will fall within one of the four quadrants. Also from the definitions given in Art. 75, we have $$\frac{\partial M}{\partial P} = \cos X \partial P$$, that is, $$OM = OP \cos XOP$$, whatever be the magnitude of the angle XOP. We shall always sup- pose, unless the contrary is stated, that the angles are measured in the positive direction. Join OP, OQ, PQ, and draw PMand QN perpendicular to QX. We have $$OM = ON + NM$$, since the line NM is to be regarded as negative; that is, the projection of ∂P = projection of ∂Q + projection of QP. Hence, the projection of one side of a triangle is equal to the sum of the projections of the other two sides taken in order. Thus projection of ∂Q =projection of ∂P +projection of PQ; projection of QP=projection of QP+projection of QP #### General Proof of the Addition Formulæ. 285. In Fig. 1, let a line starting from OX revolve until it has traced the angle A, taking up the position OM, and then let it further revolve until it has traced the angle B, taking up the final position OX. Thus XOX is the angle A + B. In ∂N take any point P, and draw PQ perpendicular to ∂M ; also draw ∂R equal and parallel to ∂P . $\therefore \cos XOP = \cos B \cos XOQ + \sin B \cos XOR$; that is, $\cos(A+B) = \cos B \cos A + \sin B \cos(90^{\circ} + A)$ = $\cos A \cos B - \sin A \sin B$. Projecting upon OY, we have only to write Y for X in (1); thus $$OP \cos YOP = OQ \cos YOQ + OR \cos YOR$$ = $OP \cos B \cos YOQ + OP \sin B \cos YOR$; $\therefore \cos YOP = \cos B \cos YOQ + \sin B \cos YOR$; that is, $$\cos (A + B - 90^\circ) = \cos B \cos (A - 90^\circ) + \sin B \cos A;$$ $$\therefore \sin (A + B) = \sin A \cos B + \cos A \sin B.$$ In Fig. 2, let a line starting from OX revolve until it has traced the angle A, taking up the position OM, and then let it revolve back again until it has traced the angle B, taking up the final position OX. Thus XOX is the angle A - B. In ON take any point P, and draw PQ perpendicular to MO produced; also draw OR equal and parallel to QP. Projecting upon OX, we have as in the previous case $$\begin{split} OP\cos XOP &= OQ\cos XOQ + OR\cos XOR \\ &= OP\cos (180^\circ - B)\cos XOQ \\ &+ OP\sin (180^\circ - B)\cos XOR \;; \end{split}$$ $\cos XOP = -\cos B\cos XOQ + \sin B\cos XOR$; that is, $$\cos (A - B) = -\cos B \cos (A - 180^{\circ}) + \sin B \cos (A - 90^{\circ})$$ $$= -\cos B (-\cos A) + \sin B \sin A$$ $$= \cos A \cos B + \sin A \sin B.$$ Projecting upon OY, we have $$\begin{split} OP\cos YOP &= OQ\cos YOQ + OR\cos YOR\;;\\ &= OP\cos(180^\circ - B)\cos YOQ\\ &+ OP\sin(180^\circ - B)\cos YOR\;; \end{split}$$ $$\cos YOP = -\cos B\cos YOQ + \sin B\cos YOR;$$ that is, $$\cos (A - B - 90^{\circ}) = -\cos B \cos (A - 270^{\circ}) + \sin B \cos (A - 180^{\circ});$$ $$\therefore \sin (A - B) = -\cos B (-\sin A) + \sin B (-\cos A)$$ $$= \sin A \cos B - \cos A \sin B.$$ 286. The above method of proof is applicable to every case, and therefore the Addition Formulæ are universally established. The universal truth of the Addition Formulæ may also be deduced from the special geometrical investigations of Arts. 110 and 111 by analysis, as in the next article. **287.** When each of the angles A, B, A + B is less than 90°, we have shewn that $$\cos(A+B) = \cos A \cos B - \sin A \sin B \dots (1).$$ But $$\cos(A+B) = \sin(\overline{A+B} + 90^{\circ}) = \sin(\overline{A+90^{\circ}} + B);$$ so $$\cos A = \sin(A+90^{\circ}),$$ also $$-\sin A = \cos (A + 90^{\circ})$$. [Art. 98.] Hence by substitution in (1), we have $$\sin (\overline{A + 90^{\circ}} + B) = \sin (A + 90^{\circ}) \cos B + \cos (A + 90^{\circ}) \sin B.$$ In like manner, it may be proved that $$\cos(\overline{A+90^{\circ}}+B) = \cos(A+90^{\circ})\cos B - \sin(A+90^{\circ})\sin B$$. Thus the formulæ for the sine and cosine of A+B hold when A is increased by 90°. Similarly we may shew that they hold when B is increased by 90°. By repeated applications of the same process it may be proved that the formulæ are true when either or both of the angles A and B is increased by any multiple of 90° . Again, $$\cos(A+B) = \cos A \cos B - \sin A \sin B$$(1). But $\cos(A+B) = -\sin(\overline{A+B} - 90^{\circ}) = -\sin(\overline{A-90^{\circ}} + B)$; so $\cos A = -\sin(A-90^{\circ})$, also $$\sin A = \cos (A - 90^{\circ})$$. [Arts. 99 and 102.] Hence by substitution in (1), we have $$\sin(A - 90^{\circ} + B) = \sin(A - 90^{\circ})\cos B + \cos(A - 90^{\circ})\sin B$$. Similarly we may shew that $$\cos(\overline{A} - 90^{\circ} + B) = \cos(A - 90^{\circ})\cos B - \sin(A - 90^{\circ})\sin B$$. Thus the formulæ for the sine and cosine of A+B hold when A is diminished by 90°. In like manner we may prove that they are true when B is diminished by 90°. By repeated applications of the same process it may be shewn that the formulæ hold when either or both of the angles A and B is diminished by any multiple of 90°. Further, it will be seen that the formulæ are true if either of the angles A or B is increased by a multiple of 90° and the other is diminished by a multiple of 90°. Thus $\sin(P+Q) = \sin P \cos Q + \cos P \sin Q$, and $\cos(P+Q) = \cos P \cos Q - \sin P \sin Q$, where $P = A \pm m \cdot 90^{\circ}$, and $Q = B \pm n \cdot 90^{\circ}$, m and n being any positive integers, and A and B any acute angles. Thus the Addition–Formulæ are true for the algebraical sum of any two angles. ### MISCELLANEOUS EXAMPLES. H. - 1. If the sides of a right-angled triangle are $\cos 2a + \cos 2\beta + 2 \cos (a+\beta)$ and $\sin 2a + \sin 2\beta + 2 \sin (a+\beta)$, shew that the hypotenuse is $4\cos^2 \frac{a-\beta}{2}$. - 2. If the in-centre and circum-centre be at equal distances from BC, prove that $\cos B + \cos C = 1$. - 3. The shadow of a tower is observed to be half the known height of the tower, and some time afterwards to be equal to the height: how much will the sun have gone down in the interval? Given log 2, $L \tan 63^{\circ} 26' = 10.3009994$, diff. for 1' = 3159. 4. If $$(1+\sin \alpha)(1+\sin \beta)(1+\sin \gamma)$$ = $(1-\sin \alpha)(1-\sin \beta)(1-\sin \gamma)$, shew that each expression is equal to $\pm \cos a \cos \beta \cos \gamma$. 5. Two parallel chords of a circle lying on the same side of the centre subtend 72° and 144° at the centre: prove that the distance between them is one-half of the radius. Also shew that the sum of the squares of the chords is equal to five times the square of the radius, 6. Two straight railways are inclined at an angle of 60° . From their point of intersection two trains P and Q start at the same time, one along each line. P travels at the rate of 48 miles per hour, at what rate must Q travel so that after one hour they shall be 43 miles apart? 7. If $$a = \cos^{-1}\frac{x}{a} + \cos^{-1}\frac{y}{b},$$ shew that $$\sin^2 a = \frac{x^2}{a^2} - \frac{2xy}{ab}\cos a + \frac{y^2}{b^2}.$$ 8. If p, q, r denote the sides of the ex-central triangle, prove that $$\frac{a^2}{p^2} \! + \! \frac{b^2}{q^2} \! + \! \frac{c^2}{r^2} \! + \! \frac{2abc}{pqr} \! = \! 1.$$ 9. A tower is situated within the angle formed by two straight roads OA and OB, and subtends angles a and B at the points A and B where the roads are nearest to it. If OA = a, and OB = b, shew that the height of the tower is $$\sqrt{a^2-b^2}\sin a\sin \beta / \sqrt{\sin (a+\beta)\sin (a-\beta)}$$. 10. In a triangle, shew that $$r^2 + r_1^2 + r_2^2 + r_3^2 = 16R^2 - a^2 - b^2 - c^2$$. - 11. If AD be a median of the triangle ABC, shew that - (1) $\cot BAD = 2 \cot A + \cot B$; - (2) $2 \cot ADC = \cot B \cot C$. - 12. If p, q, r are the distances of the orthocentre from the sides, prove that $$4\left(\frac{a}{p} + \frac{b}{q} + \frac{c}{r}\right) = \left(\frac{a}{p} + \frac{b}{q} - \frac{c}{r}\right)\left(\frac{b}{q} + \frac{c}{r} - \frac{a}{p}\right)\left(\frac{c}{r} + \frac{a}{p} - \frac{b}{q}\right).$$ # Graphical Representation of the Circular Functions. 288. DEFINITION. Let f(x) be a function of x which has a single value for all values of x, and let the values of x be represented by lines measured from O along OX or OX', and the values of f(x) by lines drawn perpendicular to XX'. Then with the figure of the next article, if OM represent any value of x, and MP the corresponding value of f(x), the curve traced out by the point P is called the **Graph** of f(x). # Graphs of $\sin \theta$ and $\cos \theta$. 289. Suppose that the unit of length is chosen to represent a radian; then any angle of θ radians will be represented by a line ∂M which contains θ units of length. # Graph of $\sin \theta$. Let MP, drawn perpendicular to OX, represent the value of $\sin
\theta$ corresponding to the value OM of θ ; then the curve traced out by the point P represents the graph of $\sin \theta$. As OM or θ increases from 0 to $\frac{\pi}{2}$, MP or $\sin \theta$ increases from 0 to 1, which is its greatest value. As OM increases from $\frac{\pi}{2}$ to π , MP decreases from 0 to 1. As ∂M increases from π to $\frac{3\pi}{2}$, MP increases numerically from 0 to -1. As ∂M increases from $\frac{3\pi}{2}$ to 2π , MP decreases numerically from -1 to 0. As OM increases from 2π to 4π , from 4π to 6π , from 6π to 8π ,, MP passes through the same series of values as when OM increases from 0 to 2π . Since $\sin(-\theta) = -\sin\theta$, the values of MP lying to the left of O are equal in magnitude but are of opposite sign to values of MP lying at an equal distance to the right of O. Thus the graph of $\sin \theta$ is a *continuous* waving line extending to an infinite distance on each side of O. The graph of $\cos \theta$ is the same as that of $\sin \theta$, the origin being at the point marked $\frac{\pi}{2}$ in the figure. ### Graphs of $\tan \theta$ and $\cot \theta$. 290. As before, suppose that the unit of length is chosen to represent a radian; then any angle of θ radians will be represented by a line ∂M which contains θ units of length. Let MP, drawn perpendicular to ∂X , represent the value of $\tan \theta$ corresponding to the value ∂M of θ ; then the curve traced out by the point P represents the graph of $\tan \theta$. By tracing the changes in the value of $\tan \theta$ as θ varies from 0 to 2π , from 2π to 4π ,....., it will be seen that the graph of $\tan \theta$ consists of an infinite number of discontinuous equal branches as represented in the figure below. The part of each branch beneath XA' is convex towards XA', and the part of each branch above XA' is also convex towards XA'; hence at the point where any branch cuts XA' there is what is called a point of inflexion, where the direction of curvature changes. The proof of these statements is however beyond the range of the present work. The various branches touch the dotted lines passing through the points marked $$\pm \frac{\pi}{2}, \quad \pm \frac{3\pi}{2}, \quad \pm \frac{5}{2}, \dots,$$ at an infinite distance from XX'. The student should draw the graph of $\cot \theta$, which is very similar to that of $\tan \theta$. # Graphs of sec 0 and cosec 0. **291.** The graph of $\sec \theta$ is represented in the figure below. It consists of an infinite number of equal festoens lying alternately above and below XX', the vertex of each being at the unit of distance from XX'. The various festoens touch the dotted lines passing through the points marked $$\pm \frac{\pi}{2}$$, $\pm \frac{3\pi}{2}$, $\pm \frac{5\pi}{2}$, at an infinite distance from XX'. Graph of $\sec \theta$. The graph of cosec θ is the same as that of sec θ , the origin being at the point marked $-\frac{\pi}{2}$ in the figure. ### CHAPTER XXIII. #### SUMMATION OF FINITE SERIES. 292. An expression in which the successive terms are formed by some regular law is called a series. If the series ends at some assigned term it is called a finite series; if the number of terms is unlimited it is called an infinite series. A series may be denoted by an expression of the form $$u_1 + u_2 + u_3 + \ldots + u_{n-1} + u_n + u_{n+1} + \ldots$$ where u_{n+1} , the (n+1)th term, is obtained from u_n , the nth term, by replacing n by n+1. Thus if $$u_n = \cos(a + n\beta)$$, then $u_{n+1} = \cos\{a + (n+1)\beta\}$; and if $u_n = \cot 2^{n-1}a$, then $u_{n+1} = \cot 2^na$. 293. If the r^{th} term of a series can be expressed as the difference of two quantities one of which is the same function of r that the other is of r+1, the sum of the series may be readily found. For let the series be denoted by $$u_1 + u_2 + u_3 + \ldots + u_n$$ and its sum by S, and suppose that any term $$u_r = v_{r+1} - v_r \; ;$$ then $$S = (v_2 - v_1) + (v_3 - v_2) + (v_4 - v_3) + \ldots + (v_n - v_{n-1}) + (v_{n+1} - v_n) = v_{n+1} - v_1$$. Example. Find the sum of the series $\csc \alpha + \csc 2\alpha + \csc 4\alpha + \dots + \csc 2^{n-1}\alpha$. $$\csc\alpha = \frac{1}{\sin\alpha} = \frac{\sin\frac{\alpha}{2}}{\sin\frac{\alpha}{2}\sin\alpha} = \frac{\sin\left(\alpha - \frac{\alpha}{2}\right)}{\sin\frac{\alpha}{2}\sin\alpha}.$$ $$\csc \alpha = \cot \frac{\alpha}{2} - \cot \alpha.$$ If we replace a by 2a, we obtain $\csc 2a = \cot a - \cot 2a$. Similarly, $$\operatorname{eosce} 4a = \cot 2a - \cot 4a,$$ $$\csc 2^{n-1} \alpha = \cot 2^{n-2} \alpha - \cot 2^{n-1} \alpha$$. By addition, $$S = \cot \frac{\alpha}{2} - \cot 2^{n-1} \alpha.$$ 294. To find the sum of the sines of a series of 11 angles which are in arithmetical progression. Let the sine-series be denoted by $$\sin a + \sin (a+\beta) + \sin (a+2\beta) + \dots + \sin \{a + (n-1)\beta\}.$$ We have the identities $$2\sin a \sin \frac{\beta}{2} = \cos\left(\alpha - \frac{\beta}{2}\right) - \cos\left(\alpha + \frac{\beta}{2}\right),$$ $$2\sin(\alpha + \beta)\sin\frac{\beta}{2} = \cos\left(\alpha + \frac{\beta}{2}\right) - \cos\left(\alpha + \frac{3\beta}{2}\right),$$ $$2\sin(\alpha + 2\beta)\sin\frac{\beta}{2} = \cos\left(\alpha + \frac{3\beta}{2}\right) - \cos\left(\alpha + \frac{5\beta}{2}\right),$$ $$2\sin\left\{a+\left(n-1\right)\beta\right\}\sin\frac{\beta}{2}=\cos\left(a+\frac{2n-3}{2}\beta\right)-\cos\left(a+\frac{2n-1}{2}\beta\right).$$ By addition, $$2S \sin \frac{\beta}{2} = \cos \left(a - \frac{\beta}{2} \right) - \cos \left(a + \frac{2n-1}{2} \beta \right)$$ $$= 2 \sin \left(a + \frac{n-1}{2} \beta \right) \sin \frac{n\beta}{2};$$ $$\therefore S = \frac{\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}\sin\left(a + \frac{n-1}{2}\beta\right).$$ 295. In like manner we may shew that the sum of the cosine-series $$\cos a + \cos (a+\beta) + \cos (a+2\beta) + \dots + \cos \{a + (n-1)\beta\}$$ $$= \frac{\sin \frac{n\beta}{2}}{\sin \frac{\beta}{2}} \cos \left(a + \frac{n-1}{2}\beta\right).$$ 296. The formulae of the two last articles may be expressed verbally as follows. The sum of the sines of a series of n angles in A.P. $$= \frac{\sin \frac{\text{n } diff.}{2}}{\sin \frac{diff.}{2}} \sin \frac{\text{first angle} + \text{last angle}}{2}.$$ The sum of the cosines of a series of n angles in A.P. $$= \frac{\sin\frac{\text{n diff.}}{2}}{\sin\frac{\text{diff.}}{2}}\cos\frac{\text{first angle+last angle}}{2}.$$ Example. Find the sum of the series $\cos \alpha + \cos 3\alpha + \cos 5\alpha + \dots + \cos (2n-1) \alpha$. Here the common difference of the angles is 2a; $$S = \frac{\sin n\alpha}{\sin \alpha} \cos \frac{\alpha + (2n - 1)\alpha}{2}$$ $$= \frac{\sin n\alpha \cos n\alpha}{\sin \alpha} = \frac{\sin 2n\alpha}{2\sin \alpha}$$ 297. If $\sin \frac{n\beta}{2} = 0$, each of the expressions found in Arts. 294 and 295 for the sum vanishes. In this case $$\frac{n\beta}{2} = k\pi$$, or $\beta = \frac{2k\pi}{n}$, where k is any integer. Hence the sum of the sines and the sum of the cosines of n angles in arithmetical progression are each equal to zero, when the common difference of the angles is an even multiple of $\frac{\pi}{n}$. 298. Some series may be brought under the rule of Art. 296 by a simple transformation. Example 1. Find the sum of n terms of the series $\cos \alpha - \cos (\alpha + \beta) + \cos (\alpha + 2\beta) - \cos (\alpha + 3\beta) + \dots$ This series is equal to $\cos \alpha + \cos (\alpha + \beta + \pi) + \cos (\alpha + 2\beta + 2\pi) + \cos (\alpha + 3\beta + 3\pi) + \dots$, a series in which the common difference of the angles is $\beta + \pi$, and the last angle is $\alpha + (n-1)$ $(\beta + \pi)$. $$\therefore S = \frac{\sin\frac{n(\beta + \pi)}{2}}{\sin\frac{\beta + \pi}{2}}\cos\left\{\alpha + \frac{(n-1)(\beta + \pi)}{2}\right\}.$$ Example 2. Find the sum of n terms of the series $\sin \alpha + \cos (\alpha + \beta) - \sin (\alpha + 2\beta) - \cos (\alpha + 3\beta) + \sin (\alpha + 4\beta) + \dots$ This series is equal to $$\sin \alpha + \sin \left(\alpha + \beta + \frac{\pi}{2}\right) + \sin \left(\alpha + 2\beta + \pi\right) + \sin \left(\alpha + 3\beta + \frac{3\pi}{2}\right) + \dots$$ a series in which the common difference of the angles is $\beta + \frac{\pi}{2}$. $$\therefore S = \frac{\sin\frac{n(2\beta + \pi)}{4}}{\sin\frac{2\beta + \pi}{4}}\sin\left\{\alpha + \frac{(n-1)(2\beta + \pi)}{4}\right\}.$$ ## EXAMPLES. XXIII. a. Sum each of the following series to n terms: - 1. $\sin a + \sin 3a + \sin 5a + \dots$ - 2. $\cos a + \cos (a \beta) + \cos (a 2\beta) + \dots$ - 3. $\sin a + \sin \left(a \frac{\pi}{n}\right) + \sin \left(a \frac{2\pi}{n}\right) + \dots$ - $4. \quad \cos\frac{\pi}{k} + \cos\frac{2\pi}{k} + \cos\frac{3\pi}{k} + \dots$ Find the sum of each of the following series: 5. $$\cos \frac{\pi}{19} + \cos \frac{3\pi}{19} + \cos \frac{5\pi}{19} + \dots + \cos \frac{17\pi}{19}$$. 6. $$\cos \frac{2\pi}{21} + \cos \frac{4\pi}{21} + \cos \frac{6\pi}{21} + \dots + \cos \frac{20\pi}{21}$$. 7. $$\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \sin \frac{3\pi}{n} + \dots$$ to $n-1$ terms. 8. $$\cos \frac{\pi}{n} + \cos \frac{3\pi}{n} + \cos \frac{5\pi}{n} + \dots$$ to $2n - 1$ terms. 9. $$\sin na + \sin (n-1)a + \sin (n-2)a + \dots$$ to $2n$ terms. Sum each of the following series to n terms: 10. $$\sin \theta - \sin 2\theta + \sin 3\theta - \sin 4\theta + \dots$$ 11. $$\cos a - \cos (a - \beta) + \cos (a - 2\beta) - \cos (a - 3\beta) + \dots$$ 12. $$\cos a - \sin (a - \beta) - \cos (a - 2\beta) + \sin (a - 3\beta) + \dots$$ 13. $$\sin 2\theta \sin \theta + \sin 3\theta \sin 2\theta + \sin 4\theta \sin 3\theta + \dots$$ 14. $$\sin a \cos 3a + \sin 3a \cos 5a + \sin 5a \cos 7a + \dots$$ 15. $$\sec a \sec 2a + \sec 2a \sec 3a + \sec 3a \sec 4a + \dots$$ 16. $$\csc \theta \csc 3\theta + \csc 3\theta \csc 5\theta + \csc
5\theta \csc 7\theta + \ldots$$ 17. $$\tan \frac{a}{5} \sec a + \tan \frac{a}{52} \sec \frac{a}{5} + \tan \frac{a}{53} \sec \frac{a}{52} + \dots$$ 18. $$\cos 2a \csc 3a + \cos 6a \csc 9a + \cos 18a \csc 27a + \dots$$ 19. $$\sin a \sec 3a + \sin 3a \sec 9a + \sin 9a \sec 27a + \dots$$ 20. The circumference of a semicircle of radius a is divided into n equal arcs. Shew that the sum of the distances of the several points of section from either extremity of the diameter is $$a\left(\cot\frac{\pi}{4n}-1\right).$$ 21. From the angular points of a regular polygon, perpendiculars are drawn to XX' and YY' the horizontal and vertical diameter of the circumscribing circle: shew that the algebraical sums of each of the two sets of perpendiculars are equal to zero. 299. By means of the identities $$2 \sin^2 a = 1 - \cos 2a$$, $2 \cos^2 a = 1 + \cos 2a$, $4 \sin^3 a = 3 \sin a - \sin 3a$, $4 \cos^3 a = 3 \cos a + \cos 3a$, we can find the sum of the squares and cubes of the sines and cosines of a series of angles in arithmetical progression. Example 1. Find the sum of $$n$$ terms of the series $$\sin^2 \alpha + \sin^2 (\alpha + \beta) + \sin^2 (\alpha + 2\beta) + \dots$$ $$2S = \{1 - \cos 2\alpha\} + \{1 - \cos (2\alpha + 2\beta)\} + \{1 - \cos (2\alpha + 4\beta)\} + \dots$$ $$= n - \{\cos 2\alpha + \cos (2\alpha + 2\beta) + \cos (2\alpha + 4\beta) + \dots\};$$ $$= n - \frac{\sin n\beta}{\sin \beta} \cos \frac{2\alpha + \{2\alpha + (n-1) 2\beta\}}{2};$$ $$\therefore S = \frac{n}{2} - \frac{\sin n\beta}{2 \sin \beta} \cos \{2\alpha + (n-1)\beta\}.$$ Example 2. Find the sum of the series $$\cos^3 \alpha + \cos^3 3a + \cos^3 5\alpha + \dots + \cos^3 (2n-1) \alpha$$. $$4S = (3\cos\alpha + \cos 3\alpha) + (3\cos 3\alpha + \cos 9\alpha) + (3\cos 5\alpha + \cos 15\alpha) + \dots$$ = 3(\cos \alpha + \cos 3\alpha + \cos 5\alpha + \dots 15\alpha $$= \frac{3 \sin n\alpha}{\sin \alpha} \cos \left\{ \frac{\alpha + (2n - 1)\alpha}{2} \right\} + \frac{\sin 3n\alpha}{\sin 3\alpha} \cos \left\{ \frac{3\alpha + (2n - 1)3\alpha}{2} \right\};$$ $$\therefore S = \frac{3 \sin n\alpha \cos n\alpha}{4 \sin \alpha} + \frac{\sin 3n\alpha \cos 3n\alpha}{4 \sin 3\alpha}.$$ 300. The following further examples illustrate the principle of Art. 293. Example 1. Find the sum of the series $$\tan^{-1}\frac{x}{1+1\cdot 2\cdot x^2} + \tan^{-1}\frac{x}{1+2\cdot 3\cdot x^2} + \dots + \tan^{-1}\frac{x}{1+n(n+1)x^2}$$ As in Art. 249, we have $$\tan^{-1} \frac{x}{1+r(r+1) \cdot x^2} = \tan^{-1} (r+1) \cdot x - \tan^{-1} rx;$$ $\therefore S = \tan^{-1} (n+1) \cdot x - \tan^{-1} x.$ H. K. E. T. Example 2. Find the sum of n terms of the series $$\tan \alpha + \frac{1}{2} \tan \frac{\alpha}{2} + \frac{1}{2^2} \tan \frac{\alpha}{2^2} + \frac{1}{2^3} \tan \frac{\alpha}{2^3} + \dots$$ We have $\tan \alpha = \cot \alpha - 2 \cot 2\alpha$. Replacing a by $\frac{a}{2}$ and dividing by 2, we obtain $$\frac{1}{2}\tan\frac{\alpha}{2} = \frac{1}{2}\cot\frac{\alpha}{2} - \cot\alpha.$$ Similarly, $$\frac{1}{2^2}\tan\frac{\alpha}{2^2} = \frac{1}{2^2}\cot\frac{\alpha}{2^2} - \frac{1}{2}\cot\frac{\alpha}{2};$$ $$\frac{1}{2^{n-1}}\tan\frac{a}{2^{n-1}} = \frac{1}{2^{n-1}}\cot\frac{a}{2^{n-1}} - \frac{1}{2^{n-2}}\cot\frac{a}{2^{n-2}}.$$ By addition, $$S = \frac{1}{2^{n-1}} \cot \frac{\alpha}{2^{n-1}} - 2 \cot 2\alpha.$$ ### EXAMPLES. XXIII. b. Sum each of the following series to n terms: 1. $$\cos^2 \theta + \cos^2 3\theta + \cos^2 5\theta + \dots$$ 2. $$\sin^2 a + \sin^2 \left(a + \frac{\pi}{n}\right) + \sin^2 \left(a + \frac{2\pi}{n}\right) + \dots$$ 3. $$\cos^2 a + \cos^2 \left(a - \frac{\pi}{n} \right) + \cos^2 \left(a - \frac{2\pi}{n} \right) + \dots$$ 4. $$\sin^3 \theta + \sin^3 2\theta + \sin^3 3\theta + \dots$$ 5. $$\sin^3 a + \sin^3 \left(a + \frac{2\pi}{n} \right) + \sin^3 \left(a + \frac{4\pi}{n} \right) + \dots$$ 6. $$\cos^3 a + \cos^3 \left(a - \frac{2\pi}{n} \right) + \cos^3 \left(a - \frac{4\pi}{n} \right) + \dots$$ 7. $$\tan \theta + 2 \tan 2\theta + 2^2 \tan 2^2\theta + \dots$$ 8. $$\frac{1}{\cos a + \cos 3a} + \frac{1}{\cos a + \cos 5a} + \frac{1}{\cos a + \cos 7a} + \dots$$ 9. $$\sin^2\theta \sin 2\theta + \frac{1}{2}\sin^2 2\theta \sin 4\theta + \frac{1}{4}\sin^2 4\theta \sin 8\theta + \dots$$ **10.** $$2\cos\theta\sin^2\frac{\theta}{2} + 2^2\cos\frac{\theta}{2}\sin^2\frac{\theta}{2^2} + 2^3\cos\frac{\theta}{2^2}\sin^2\frac{\theta}{2^3} + \dots$$ 11. $$\tan^{-1} \frac{x}{1 \cdot 2 + x^2} + \tan^{-1} \frac{x}{2 \cdot 3 + x^2} + \tan^{-1} \frac{x}{3 \cdot 4 + x^2} + \dots$$ 12. $$\tan^{-1}\frac{1}{1+1+1^2} + \tan^{-1}\frac{1}{1+2+2^2} + \tan^{-1}\frac{1}{1+3+3^2} + \dots$$ 13. $$\tan^{-1} \frac{2}{2+1^2+1^4} + \tan^{-1} \frac{4}{2+2^2+2^4} + \tan^{-1} \frac{6}{2+3^2+3^4} + \dots$$ 14. $$\tan^{-1} \frac{2}{1-1^2+1^4} + \tan^{-1} \frac{4}{1-2^2+2^4} + \tan^{-1} \frac{6}{1-3^2+3^4} + \dots$$ - 15. From any point on the circumference of a circle of radius r, chords are drawn to the angular points of the regular inscribed polygon of n sides: shew that the sum of the squares of the chords is $2nr^2$. - 16. From a point P within a regular polygon of 2n sides, perpendiculars PA_1 , PA_2 , PA_3 , ... PA_{2n} are drawn to the sides; shew that $$PA_1 + PA_3 + ... + PA_{2n-1} = PA_2 + PA_4 + ... + PA_{2n} = nr$$, where r is the radius of the inscribed circle. 17. If $A_1A_2A_3...A_{2n+1}$ is a regular polygon and P a point on the circumscribed circle lying on the arc A_1A_{2n+1} , shew that $$PA_1 + PA_3 + ... + PA_{2n+1} = PA_2 + PA_4 + ... + PA_{2n}$$ - 18. From any point on the circumference of a circle, perpendiculars are drawn to the sides of the regular circumscribing polygon of n sides: shew that - (1) the sum of the squares of the perpendiculars is $\frac{3nr^2}{2}$; - (2) the sum of the cubes of the perpendiculars is $\frac{5nr^3}{2}$. # CHAPTER XXIV. #### MISCELLANEOUS TRANSFORMATIONS AND IDENTITIES. ## Symmetrical Expressions. 301. An expression is said to be *symmetrical* with respect to certain of the letters it contains, if the value of the expression remains unaltered when any pair of these letters are interchanged. Thus $$\cos a + \cos \beta + \cos \gamma$$, $\sin a \sin \beta \sin \gamma$, $\tan (\alpha - \theta) + \tan (\beta - \theta) + \tan (\gamma - \theta)$, are expressions which are symmetrical with respect to the letters a, β, γ . 302. A symmetrical expression involving the *sum* of a number of quantities may be concisely denoted by writing down one of the *terms* and prefixing the symbol Σ . Thus $\Sigma \cos a$ stands for the sum of all the terms of which $\cos a$ is the type, $\Sigma \sin a \sin \beta$ stands for the sum of all the terms of which $\sin a \sin \beta$ is the type; and so on. For instance, if the expression is symmetrical with respect to the three letters a, β, γ , $$\Sigma \cos \beta \cos \gamma = \cos \beta \cos \gamma + \cos \gamma \cos \alpha + \cos \alpha \cos \beta;$$ $$\Sigma \sin (\alpha - \theta) = \sin (\alpha - \theta) + \sin (\beta - \theta) + \sin (\gamma - \theta).$$ 303. A symmetrical expression involving the *product* of a number of quantities may be denoted by writing down one of the *factors* and prefixing the symbol Π . Thus $\Pi \sin a$ stands for the product of all the factors of which $\sin a$ is the type. For instance, if the expression is symmetrical with respect to the three letters a, β, γ , $$\Pi \tan (a+\theta) = \tan (a+\theta) \tan (\beta+\theta) \tan (\gamma+\theta);$$ $$\Pi (\cos \beta + \cos \gamma) = (\cos \beta + \cos \gamma) (\cos \gamma + \cos a) (\cos a + \cos \beta).$$ 304. With the notation just explained, certain theorems in Chap. XII. involving the three angles A, B, C, which are connected by the relation $A+B+C=180^{\circ}$, may be written more concisely. For instance $$\Sigma \sin 2A = 4\Pi \sin A;$$ $$\Sigma \sin A = 4\Pi \cos \frac{A}{2};$$ $$\Sigma \tan A = \Pi \tan A;$$ $$\Sigma \tan \frac{B}{2} \tan \frac{C}{2} = 1.$$ Example 1. Find the ratios of a:b:c from the equations $a\cos\theta+b\sin\theta=c$ and $a\cos\phi+b\sin\phi=c$. From the given equations, we have $$a \cos \theta + b \sin \theta - c = 0,$$ $a \cos \phi + b \sin \phi - c = 0;$ and whence by cross multiplication $$\frac{a}{\sin \phi - \sin \theta} = \frac{b}{\cos \theta - \cos \phi} = \frac{c}{\sin \phi \cos \theta - \cos \phi \sin \theta};$$ $$\therefore \frac{a}{2 \cos \frac{\phi + \theta}{2} \sin \frac{\phi - \theta}{2}} = \frac{b}{2 \sin \frac{\phi + \theta}{2} \sin \frac{\phi - \theta}{2}} = \frac{c}{\sin (\phi - \theta)}.$$ Dividing each denominator by $2 \sin \frac{\phi - \theta}{2}$, we have $$\frac{a}{\cos\frac{\theta+\phi}{2}} = \frac{b}{\sin\frac{\theta+\phi}{2}} = \frac{c}{\cos\frac{\theta-\phi}{2}}.$$ Note. This result is important in Analytical Geometry. It should be remarked that $\cos(\theta - \phi)$ is a symmetrical function of θ and ϕ , for $\cos(\theta - \phi) = \cos(\phi - \theta)$; hence the values obtained for a:b:c involve θ and ϕ symmetrically. *Example 2.* If α and β are two different values of θ which satisfy the equation $a\cos\theta + b\sin\theta = c$, find the values of $$4\cos^2\frac{\alpha}{2}\cos^2\frac{\beta}{2}$$, $\sin\alpha+\sin\beta$, $\sin\alpha\sin\beta$. From the given equation, by transposing and squaring, $$(a\cos\theta - c)^2 = b^2\sin^2\theta = b^2(1 - \cos^2\theta);$$ $$\therefore (a^2 + b^2) \cos^2 \theta - 2ac \cos \theta + c^2 - b^2 = 0.$$ The roots of this quadratic in $\cos \theta$ are $\cos \alpha$ and $\cos \beta$; $$\therefore \cos \alpha + \cos \beta = \frac{2ac}{a^2 + b^2} \qquad (1),$$ and $$\cos a \cos \beta = \frac{c^2 - b^2}{a^2 + b^2} \qquad (2).$$ And $$4\cos^2\frac{a}{2}\cos^2\frac{\beta}{2} = (1+\cos a)(1+\cos \beta)$$ $$= 1 + \frac{2ac}{a^2+b^2} + \frac{c^2-b^2}{a^2+b^2}$$ $$= \frac{(a+c)^2}{a^2+b^2}.$$ From the data, we see that $\frac{\pi}{2} - \alpha$ and $\frac{\pi}{2} - \beta$ are values of θ which satisfy the equation $a \sin
\theta + b \cos \theta = c$. By writing a for b and b for a, equation (1) becomes $$\cos\left(\frac{\pi}{2} - a\right) + \cos\left(\frac{\pi}{2} - \beta\right) = \frac{2bc}{b^2 + a^2},$$ $$\sin a + \sin \beta = \frac{2bc}{a^2 + b^2},$$ UJ, Similarly, from equation (2) we have $$\sin \alpha \sin \beta = \frac{c^2 - a^2}{a^2 + b^2}.$$ These last two results may also be derived from the equation $(b \sin \theta - c)^2 = a^2 \cos^2 \theta = a^2 (1 - \sin^2 \theta).$ Example 3. If a and β are two different values of θ which satisfy the equation $a\cos\theta + b\sin\theta = c$, prove that $\tan\frac{\alpha+\beta}{2} = \frac{b}{a}$. Also if the values of α and β are equal, shew that $a^2 + b^2 = c^2$. By substituting $$\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$ and $\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$ that is. in the given equation $a \cos \theta + b \sin \theta = c$, we have $$a\left(1 - \tan^2\frac{\theta}{2}\right) + 2b\tan\frac{\theta}{2} = c\left(1 + \tan^2\frac{\theta}{2}\right);$$ $(c+a)\tan^2\frac{\theta}{2} - 2b\tan\frac{\theta}{2} + (c-a) = 0$(1). The roots of this equation are $\tan \frac{a}{2}$ and $\tan \frac{\beta}{2}$; $$\therefore \tan \frac{\alpha}{2} + \tan \frac{\beta}{2} = \frac{2b}{c+a}, \quad \text{and} \quad \tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{c-a}{c+a};$$ $$\therefore \tan \frac{\alpha+\beta}{2} = \frac{2b}{c+a} / \left(1 - \frac{c-a}{c+a}\right) = \frac{b}{a}.$$ If the roots of equation (1) are equal, we have $$b^2 = (c+a)(c-a);$$ whence $$a^2 + b^2 = c^2$$ Note. The substitution here employed is frequently used in Analytical Geometry. Example 4. If $\cos \theta + \cos \phi = a$ and $\sin \theta + \sin \phi = b$, find the values of $\cos (\theta + \phi)$ and $\sin 2\theta + \sin 2\phi$. From the given equations, we have $$\frac{\sin\theta + \sin\phi}{\cos\theta + \cos\phi} = \frac{b}{a};$$ $$\therefore \tan \frac{\theta + \phi}{2} = \frac{b}{a}.$$ For shortness write t instead of $\tan \frac{\theta + \phi}{2}$; then $$\cos (\theta + \phi) = \frac{1 - t^2}{1 + t^2} = \frac{a^2 - b^2}{a^2 + b^2},$$ and $$\sin(\theta + \phi) = \frac{2t}{1 + t^2} = \frac{2ab}{a^2 + b^2}.$$ Multiplying the two given equations together, we have $$\sin 2\theta + \sin 2\phi + 2\sin (\theta + \phi) = 2ab;$$ $$\therefore \sin 2\theta + \sin 2\phi = 2ab \left(1 - \frac{2}{a^2 + b^2} \right).$$ Example 5. Resolve into factors the expression $$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + 2 \cos \alpha \cos \beta \cos \gamma - 1$$, and shew that it vanishes if any one of the four angles $\alpha \pm \beta \pm \gamma$ is an odd multiple of two right angles. The expression $$=\cos^2\alpha + (\cos^2\beta + \cos^2\gamma - 1) + 2\cos\alpha\cos\beta\cos\gamma$$ $=\cos^2\alpha + (\cos^2\beta - \sin^2\gamma) + 2\cos\alpha\cos\beta\cos\gamma$ $=\cos^2\alpha + \cos(\beta + \gamma)\cos(\beta - \gamma) + \cos\alpha\cos(\beta + \gamma) + \cos(\beta - \gamma)$ $= \{\cos\alpha + \cos(\beta + \gamma)\}\{\cos\alpha + \cos(\beta - \gamma)\}$ $= 4\cos\frac{\alpha + \beta + \gamma}{2}\cos\frac{\alpha - \beta - \gamma}{2}\cos\frac{\alpha + \beta - \gamma}{2}\cos\frac{\alpha - \beta + \gamma}{2}$. The expression vanishes if one of the quantities $\cos \frac{\alpha \pm \beta \pm \gamma}{2} = 0$; that is, if one of the four angles $\frac{\alpha \pm \beta \pm \gamma}{2} = (2n+1) \frac{\pi}{2}$; that is, if $\alpha \pm \beta \pm \gamma = (2n+1) \pi$, where n is any integer. Example 6. If $$\tan \theta = \frac{\sin \alpha \sin \beta}{\cos \alpha + \cos \beta}$$. prove that one value of $\tan \frac{\theta}{2}$ is $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$. From the given equation, we have $$\begin{split} \sec^2\theta &= 1 + \frac{\sin^2\alpha\sin^2\beta}{(\cos\alpha + \cos\beta)^2} = \frac{(\cos\alpha + \cos\beta)^2 + (1 - \cos^2\alpha)(1 - \cos^2\beta)}{(\cos\alpha + \cos\beta)^2} \\ &= \frac{1 + 2\cos\alpha\cos\beta + \cos^2\alpha\cos^2\beta}{(\cos\alpha + \cos\beta)^2} \,. \end{split}$$ Taking the positive root, see $\theta = \frac{1 + \cos \alpha \cos \beta}{\cos \alpha + \cos \beta}$; $$\therefore \cos \theta = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}.$$ $$\therefore \frac{1 - \cos \theta}{1 + \cos \alpha} = \frac{1 - \cos \alpha - \cos \beta + \cos \alpha \cos \beta}{1 + \cos \alpha + \cos \beta + \cos \alpha \cos \beta} = \frac{(1 - \cos \alpha)(1 - \cos \beta)}{(1 + \cos \alpha)(1 + \cos \beta)};$$ $$\therefore \tan^2 \frac{\theta}{2} = \tan^2 \frac{\alpha}{2} \tan^2 \frac{\beta}{2};$$ and therefore one value of $\tan \frac{\theta}{2}$ is $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$. Example 7. In any triangle, shew that $\sum a^3 \cos A = abc (1 + 4\Pi \cos A)$. Let $$k = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C};$$ so that $$a = k \sin A$$, $b = k \sin B$, $c = k \sin C$. By substituting these values in the given identity, and dividing by k^3 , we have to prove that $\sum \sin^3 A \cos A = \sin A \sin B \sin C (1 + 4 \prod \cos A).$ Now $$8\Sigma \sin^3 A \cos A = 4\Sigma \sin^2 A \sin 2A$$ $$= 2\Sigma (1 - \cos 2A) \sin 2A$$ $$= 2\Sigma \sin 2A - \Sigma \sin 4A :$$ and it has been shewn in Example 1, Art. 135, that $$\Sigma \sin 2A = 4\Pi \sin A$$; and it is easy to prove that $$\Sigma \sin 4A = -4\Pi \sin 2A = -32\Pi \sin A$$. $\Pi \cos A$; $$\therefore 8 \sum \sin^3 A \cos A = 8\Pi \sin A + 32\Pi \sin A$$. II $\cos A$, .. $$\Sigma \sin^3 A \cos A = \Pi \sin A (1 + 4\Pi \cos A)$$. ### EXAMPLES. XXIV. a. If $\theta = a$, and $\theta = \beta$ satisfy the equation $$\frac{1}{a}\cos\theta + \frac{1}{b}\sin\theta = \frac{1}{c},$$ prove that $$a\cos\frac{a+\beta}{2} = b\sin\frac{a+\beta}{2} = c\cos\frac{a-\beta}{2}$$. Solve the simultaneous equations: 2. $$\frac{x}{a}\cos a + \frac{y}{b}\sin a = 1$$, $\frac{x}{a}\cos \beta + \frac{y}{b}\sin \beta = 1$. 3. $$\frac{x}{a}\cos a + \frac{y}{b}\sin a = 1$$, $\frac{x}{a}\sin a - \frac{y}{b}\cos a = 1$. If a and β are two different solutions of $a\cos\theta + b\sin\theta = c$, prove that 4. $$\cos(a+\beta) = \frac{a^2 - b^2}{a^2 + b^2}$$. $$\cos(a+\beta) = \frac{a^2 - b^2}{a^2 + b^2}$$. 5. $\cos^2 \frac{a - \beta}{2} = \frac{c^2}{a^2 + b^2}$. 6. $$\sin 2a + \sin 2\beta = \frac{4ab(2c^2 - a^2 - b^2)}{(a^2 + b^2)^2}$$. 7. $$\sin^2 a + \sin^2 \beta = \frac{2a^2(a^2 + b^2) - 2c^2(a^2 - b^2)}{(a^2 + b^2)^2}$$. 8. If $$a\cos a + b\sin a = a\cos \beta + b\sin \beta = c$$, prove that $\sin(a+\beta) = \frac{2ab}{a^2 + b^2}$, and $\cot a + \cot \beta = \frac{2ab}{c^2 - a^2}$. If $\cos \theta + \cos \phi = a$ and $\sin \theta + \sin \phi = b$, prove that 9. $$\cos \theta \cos \phi = \frac{(a^2 + b^2)^2 - 4b^2}{4(a^2 + b^2)}$$. 10. $$\cos 2\theta + \cos 2\phi = \frac{(a^2 - b^2)(a^2 + b^2 - 2)}{a^2 + b^2}$$. 11. $$\tan \theta + \tan \phi = \frac{8ab}{(a^2 + b^2)^2 - 4b^2}$$ 12. $$\tan \frac{\theta}{2} + \tan \frac{\phi}{2} = \frac{4b}{a^2 + b^2 + 2a}$$. 13. Express $$1 - \cos^2 a - \cos^2 \beta - \cos^2 \gamma + 2 \cos a \cos \beta \cos \gamma$$ as the product of four sines, and shew that it vanishes if any one of the four angles $a \pm \beta \pm \gamma$ is zero or an even multiple of π . 14. Express $$\sin^2 a + \sin^2 \beta - \sin^2 \gamma + 2 \sin a \sin \beta \cos \gamma$$ as the product of two sines and two cosines. 15. Express $$\sin^2 a + \sin^2 \beta + \sin^2 \gamma - 2 \sin a \sin \beta \sin \gamma - 1$$ as the product of four cosines. 16. If $$\cos \theta = \frac{\cos a - \cos \beta}{1 - \cos a \cos \beta},$$ prove that one value of $\tan \frac{\theta}{2}$ is $\tan \frac{a}{2} \cot \frac{\beta}{2}$. 17. If $$\tan^2\theta\cos^2\frac{\alpha+\beta}{2} = \sin\alpha\sin\beta$$, prove that one value of $\tan^2 \frac{\theta}{2}$ is $\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$. 18. If $\tan \theta (\cos a + \sin \beta) = \sin a \cos \beta$, prove that one value of $\tan \frac{\theta}{2}$ is $\tan \frac{\alpha}{2} \tan \left(\frac{\pi}{4} - \frac{\beta}{2}\right)$. In any triangle, shew that 19. $\sum a^3 \sin B \sin C = 2abc (1 + \cos A \cos B \cos C)$. **20.** $$\sum a \cos^3 A = \frac{abc}{AB^2} (1 - 4 \cos A \cos B \cos C).$$ 21. $\Sigma a^3 \cos(B-C) = 3abc$. 22. If a and β are roots of the equation $a\cos\theta + b\sin\theta = c$, form the equations whose roots are (1) $\sin a$ and $\sin \beta$; (2) $\cos 2a$ and $\cos 2\beta$. ### Alternating Expressions. 305. An expression is said to be alternating with respect to certain of the letters it contains, if the sign of the expression but not its numerical value is altered when any pair of these letters are interchanged. Thus $$\cos \alpha - \cos \beta$$, $\sin (\alpha - \beta)$, $\tan (\alpha - \beta)$, $\cos^2 \alpha \sin (\beta - \gamma) + \cos^2 \beta \sin (\gamma - \alpha) + \cos^2 \gamma \sin (\alpha - \beta)$ are alternating expressions. 306. Alternating expressions may be abridged by means of the symbols Σ and Π . Thus $$\sum \sin^2 a \sin (\beta - \gamma) = \sin^2 a \sin (\beta - \gamma) + \sin^2 \beta \sin (\gamma - a) + \sin^2 \gamma \sin (a - \beta);$$ II $$\tan (\beta - \gamma) = \tan (\beta - \gamma) \tan (\gamma - a) \tan (a - \beta)$$. We shall confine our attention chiefly to alternating expressions involving the three letters a, β , γ , and we shall adopt the cyclical arrangement $\beta - \gamma$, $\gamma - a$, $a - \beta$ in which β follows a, γ follows β , and a follows γ . Example 1. Prove that $\Sigma \cos(\alpha + \theta) \sin(\beta - \gamma) = 0$. $$\Sigma \cos (\alpha + \theta) \sin (\beta - \gamma) = \Sigma (\cos \alpha \cos \theta - \sin \alpha \sin \theta) \sin (\beta - \gamma)$$ $$= \cos \theta \Sigma \cos \alpha \sin (\beta - \gamma) - \sin \theta \Sigma \sin \alpha \sin (\beta - \gamma)$$ $$= 0,$$ since $\sum \cos \alpha \sin (\beta - \gamma) = 0$ and $\sum \sin \alpha \sin (\beta - \gamma) = 0$. Example 2. Shew that $$\sum \sin 2 (\beta -
\gamma) = -4\Pi \sin (\beta - \gamma)$$. $$\sin 2 (\beta - \gamma) + \sin 2 (\gamma - \alpha) + \sin 2 (\alpha - \beta)$$ $$= 2 \sin (\beta - \alpha) \cos (\alpha + \beta - 2\gamma) + 2 \sin (\alpha - \beta) \cos (\alpha - \beta)$$ $$= 2 \sin (\alpha - \beta) \{\cos (\alpha - \beta) - \cos (\alpha + \beta - 2\gamma)\}$$ $$= 4 \sin (\alpha - \beta) \sin (\alpha - \gamma) \sin (\beta - \gamma)$$ $$= -4\Pi \sin (\beta - \gamma).$$ Example 3. Prove that - (1) $\Sigma \tan (\beta \gamma) = \Pi \tan (\beta \gamma)$; - (2) $\sum \tan \beta \tan \gamma \tan (\beta \gamma) = \Pi \tan (\beta \gamma)$. - (1) From Art. 118, if A+B+C=0, we see that $\tan A + \tan B + \tan C = \tan A \tan B \tan C.$ Hence by writing $$A = \beta - \gamma$$, $B = \gamma - \alpha$, $C = \alpha - \beta$, we have $\sum \tan (\beta - \gamma) = \Pi \tan (\beta - \gamma)$. (2) From the formulæ for $\tan (\beta - \gamma)$, $\tan (\gamma - \alpha)$, $\tan (\alpha - \beta)$, we have $\Sigma (1 + \tan \beta \tan \gamma) \tan (\beta - \gamma) = \Sigma (\tan \beta - \tan \gamma) = 0;$ whence by transposition $$\Sigma \tan \beta \tan \gamma \tan (\beta - \gamma) = -\Sigma \tan (\beta - \gamma)$$ $$= -\Pi \tan (\beta - \gamma).$$ Example 4. Shew that $$\Sigma \cos 3\alpha \sin (\beta - \gamma) = 4 \cos (\alpha + \beta + \gamma) \text{ If } \sin (\beta - \gamma).$$ Since $2 \cos 3\alpha \sin (\beta - \gamma) = \sin (3\alpha + \beta - \gamma) - \sin (3\alpha - \beta + \gamma)$, we have $$2\Sigma\cos 3\alpha\sin((\beta-\gamma)) = \sin(3\alpha+\beta-\gamma) - \sin(3\alpha-\beta+\gamma) + \sin(3\beta+\gamma-\alpha) - \sin(3\beta-\gamma+\alpha) + \sin(3\gamma+\alpha-\beta) - \sin(3\gamma-\alpha+\beta).$$ Combining the second and third terms, the fourth and fifth terms, the sixth and first terms, and dividing by 2, we have $$\Sigma \cos 3\alpha \sin (\beta - \gamma)$$ $$= \cos(\alpha + \beta + \gamma) \left\{ \sin 2(\beta - \alpha) + \sin 2(\gamma - \beta) + \sin 2(\alpha - \gamma) \right\}$$ = $4 \cos(\alpha + \beta + \gamma)$ II $\sin(\beta - \gamma)$. [See Example 2.] 307. The following example is given as a specimen of a concise solution. Example. If $(y+z)\tan\alpha+(z+x)\tan\beta+(x+y)\tan\gamma=0$, and $x\tan\beta\tan\gamma+y\tan\alpha$ tan $\alpha+z\tan\alpha$ tan $\alpha=x+y+z$, prove that $x\sin2\alpha+y\sin2\beta+z\sin2\gamma=0$. From the given equations, we have $$x (1 - \tan \beta \tan \gamma) + y (1 - \tan \gamma \tan \alpha) + z (1 - \tan \alpha \tan \beta) = 0,$$ and $$x (\tan \beta + \tan \gamma) + y (\tan \gamma + \tan \alpha) + z (\tan \alpha + \tan \beta) = 0.$$ If we find the values of x:y:z by cross multiplication, the denominator of x $$= (1 - \tan \gamma \tan \alpha) (\tan \alpha + \tan \beta) - (1 - \tan \alpha \tan \beta) (\tan \gamma + \tan \alpha)$$ $$= (\tan \beta - \tan \gamma) + \tan^2 \alpha (\tan \beta - \tan \gamma)$$ $$= (1 + \tan^2 \alpha) (\tan \beta - \tan \gamma)$$ $$= \sec^2 \alpha (\tan \beta - \tan \gamma)$$ $$= \frac{\sec \alpha \sin (\beta - \gamma)}{\cos \alpha \cos \beta \cos \gamma}.$$ Hence $$\frac{x}{\sec \alpha \sin (\beta - \gamma)} = \frac{y}{\sec \beta \sin (\gamma - \alpha)} = \frac{z}{\sec \gamma \sin (\alpha - \beta)} = k \text{ say.}$$ $$\therefore x \sin 2\alpha + y \sin 2\beta + z \sin 2\gamma = k\Sigma \sin 2\alpha \sec \alpha \sin (\beta - \gamma)$$ $$= 2k\Sigma \sin \alpha \sin (\beta - \gamma)$$ ## Allied formulæ in Algebra and Trigonometry. From well-known algebraical identities we can deduce some interesting trigonometrical identities. Example 1. In the identity put $$(x-a)(b-c) + (x-b)(c-a) + (x-c)(a-b) = 0,$$ put $$x = \cos 2\theta, \quad a = \cos 2\alpha, \quad b = \cos 2\beta, \quad c = \cos 2\gamma;$$ then $$x-a = \cos 2\theta - \cos 2\alpha = 2\sin(\alpha+\theta)\sin(\alpha-\theta),$$ and $$b-c = \cos 2\beta - \cos 2\gamma = -2\sin(\beta+\gamma)\sin(\beta-\gamma);$$ $$\therefore \ \Sigma\sin(\alpha+\theta)\sin(\alpha-\theta)\sin(\beta+\gamma)\sin(\beta-\gamma) = 0.$$ Example 2. In the identity Example 3. In the identity $$\Sigma a^{3} (b-c) = -(a+b+c) \text{ II } (b-c),$$ $$a = \cos \alpha, \quad b = \cos \beta, \quad c = \cos \gamma;$$ But $$\Sigma \cos \alpha (\cos \beta - \cos \gamma) = 0;$$ $\therefore \Sigma (4 \cos^3 \alpha - 3 \cos \alpha) (\cos \beta - \cos \gamma)$ $= -4 (\cos \alpha + \cos \beta + \cos \gamma) \Pi (\cos \beta - \cos \gamma);$ that is, put $$\Sigma \cos 3\alpha (\cos \beta - \cos \gamma) = -4 (\cos \alpha + \cos \beta + \cos \gamma) \Pi (\cos \beta - \cos \gamma).$$ Example 4. If a+b+c=0, then $a^3+b^3+c^3=3abc$. Here a, b, c may be any three quantities whose sum is zero; this condition is satisfied if we put $a = \cos(\alpha + \theta) \sin(\beta - \gamma)$, and b and c equal to corresponding quantities. Thus $$\sum \cos^3(\alpha + \theta) \sin^3(\beta - \gamma) = 3\Pi \cos(\alpha + \theta) \sin(\beta - \gamma)$$. 309. An algebraical identity may sometimes be established by the aid of Trigonometry. Example. If x+y+z=xyz, prove that $$x(1-y^2)(1-z^2)+y(1-z^2)(1-x^2)+z(1-x^2)(1-y^2)=4xyz.$$ By putting $x = \tan \alpha$, $y = \tan \beta$, $z = \tan \gamma$, we have $\tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \tan \beta \tan \gamma$; whence $$\tan \alpha = -\frac{\tan \beta + \tan \gamma}{1 - \tan \beta \tan \gamma} = -\tan (\beta + \gamma);$$ $$\therefore \alpha = n\pi - (\beta + \gamma), \text{ where } n \text{ is an integer};$$ $$\therefore \alpha + \beta + \gamma = n\pi;$$ $$\therefore 2\alpha + 2\beta + 2\gamma = 2n\pi.$$ From this relation it is easy to shew that $\tan 2\alpha + \tan 2\beta + \tan 2\gamma = \tan 2\alpha \tan 2\beta \tan 2\gamma$; $$\therefore \frac{2x}{1-x^2} + \frac{2y}{1-y^2} + \frac{2z}{1-z^2} = \frac{8xyz}{(1-x^2)(1-y^2)(1-z^2)};$$ $$\therefore x(1-y^2)(1-z^2) + y(1-z^2)(1-x^2) + z(1-x^2)(1-y^2) = 4xyz.$$ # EXAMPLES. XXIV. b. Prove the following identities: - 1. $\sum \sin(\alpha \theta) \sin(\beta \gamma) = 0$. - 2. $\sum \cos \beta \cos \gamma \sin (\beta \gamma) = \sum \sin \beta \sin \gamma \sin (\beta \gamma)$. - 3. $\sum \sin(\beta \gamma) \cos(\beta + \gamma + \theta) = 0$. - 4. $\sum \cos 2 (\beta \gamma) = 4\Pi \cos (\beta \gamma) 1$. - 5. $\sum \sin \beta \sin \gamma \sin (\beta \gamma) = \prod \sin (\beta \gamma)$. - 6. $\sum \cot (\alpha \beta) \cot (\alpha \gamma) + 1 = 0$. - 7. $\Sigma \sin 3a \sin (\beta \gamma) = 4 \sin (a + \beta + \gamma) \prod \sin (\beta \gamma)$ - 8. $\sum \cos^3 a \sin(\beta \gamma) = \cos(\alpha + \beta + \gamma) \prod \sin(\beta \gamma)$. - 9. $\sum \cos (\theta + a) \cos (\beta + \gamma) \sin (\theta a) \sin (\beta \gamma) = 0$. - 10. $\Sigma \sin^2 \beta \sin^2 \gamma \sin (\beta + \gamma) \sin (\beta \gamma)$ = $- \Pi \sin (\beta + \gamma)$. $\Pi \sin (\beta - \gamma)$. Prove the following identities: 11. $$\Sigma \cos 2\beta \cos 2\gamma \sin (\beta + \gamma) \sin (\beta - \gamma)$$ = $-4\Pi \sin (\beta + \gamma)$. $\Pi \sin (\beta - \gamma)$. 12. $$\Sigma \cos 4a \sin (\beta + \gamma) \sin (\beta - \gamma)$$ = $-8\Pi \sin (\beta + \gamma)$. $\Pi \sin (\beta - \gamma)$. 13. $$\sum \sin 3a \left(\sin \beta - \sin \gamma\right)$$ = $4 \left(\sin \alpha + \sin \beta + \sin \gamma\right) \prod \left(\sin \beta - \sin \gamma\right)$. 14. $$\sum \sin^3(\beta+\gamma)\sin^3(\beta-\gamma) = 3\Pi \sin(\beta+\gamma)$$. $\Pi \sin(\beta-\gamma)$. 15. $$\Sigma \cos^3(\beta + \gamma + \theta) \sin^3(\beta - \gamma)$$ = $3\Pi \cos(\beta + \gamma + \theta)$. $\Pi \sin(\beta - \gamma)$. 16. If x+y+z=xyz, prove that $$\sum_{1} \frac{3x - x^3}{1 - 3x^2} = \prod_{1} \frac{3x - x^3}{1 - 3x^2}.$$ 17. If yz+zv+xy=1, prove that $$\Sigma x (1 - y^2) (1 - z^2) = 4xyz$$. 310. From a trigonometrical identity many others may be derived by various substitutions. For instance, if A, B, C are any angles, positive or negative, connected by the relation $A+B+C=\pi$, we know that $$\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$$. Let $$A = \pi - 2a$$, $B = \pi - 2\beta$, $C = \pi - 2\gamma$; then $\sin A = \sin 2a$, and $\cos \frac{A}{2} = \sin a$. Also $$2(a+\beta+\gamma)=3\pi-(A+B+C)=2\pi ;$$ $$\therefore a+\beta+\gamma=\pi.$$ and $\sin 2a + \sin 2\beta + \sin 2\gamma = 4 \sin a \sin \beta \sin \gamma$. Again, let $$A = \frac{\pi}{2} - \frac{a}{2}$$, $B = \frac{\pi}{2} - \frac{\beta}{2}$, $C = \frac{\pi}{2} - \frac{\gamma}{2}$; then $$\sin A = \cos \frac{a}{2}$$, and $\cos \frac{A}{2} = \cos \frac{\pi - c}{4}$. Also $$a+\beta+\gamma=3\pi-2 (A+B+C)=3\pi-2\pi$$; $\therefore a+\beta+\gamma=\pi$, and $$\cos \frac{\alpha}{2} + \cos \frac{\beta}{2} + \cos \frac{\gamma}{2} = 4 \cos \frac{\pi - \alpha}{4} \cos \frac{\pi - \beta}{4} \cos \frac{\pi - \gamma}{4}$$ *Example.* If $A+B+C=\pi$, shew that $$\cos\frac{A}{2} + \cos\frac{B}{2} - \cos\frac{C}{2} = 4\cos\frac{\pi + A}{4}\cos\frac{\pi + B}{4}\cos\frac{\pi - C}{4}.$$ Put $$\frac{\pi + A}{4} = \frac{\alpha}{2}, \quad \frac{\pi + B}{4} = \frac{\beta}{2}, \quad \frac{C - \pi}{4} = \frac{\gamma}{2};$$ then $$\cos \frac{A}{2} = \cos \left(\alpha - \frac{\pi}{2}\right) = \sin \alpha$$, and $\cos \frac{C}{2} = \cos \left(\gamma + \frac{\pi}{2}\right) = -\sin \gamma$, so that the above identity becomes $$\sin \alpha + \sin \beta + \sin \gamma = 4 \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2}$$. which is clearly true since $$\alpha + \beta + \gamma = \frac{\pi}{2} + \frac{A + B + C}{2} = \frac{\pi}{2} + \frac{\pi}{2} = \pi.$$ When $A + B + C = n\pi$, 311. $$\tan(A + B) = \tan(n\pi - C) = -\tan C;$$ whence we obtain $\sum \tan A = \prod \tan A$. $$\Sigma \tan A = \Pi \tan A$$. When n=0, the given condition is satisfied in the case of any three angles whose sum is 0; as for instance if $$A = \beta + \gamma - 2\alpha$$, $B = \gamma + \alpha - 2\beta$, $C = \alpha + \beta - 2\gamma$. Hence $$\sum \tan (\beta + \gamma - 2a) = \Pi \tan (\beta + \gamma - 2a)$$. Example. If $\alpha + \beta + \gamma = 0$, shew that $$\Sigma \cot (\gamma + \alpha - \beta) \cot (\alpha + \beta -
\gamma) = 1.$$ $\beta + \gamma - \alpha = A$, $\gamma + \alpha - \beta = B$, $\alpha + \beta - \gamma = C$; then, by addition, $$A+B+C=\alpha+\beta+\gamma=0;$$ $\cot (A+B) = -\cot C$: $\Sigma \cot A \cot B = 1$. whence $\Sigma \cot (\gamma + \alpha - \beta) \cot (\alpha + \beta - \gamma) = 1.$ that is, H. K. E. T. 312. The following example is a further illustration of the manner in which an identity may be established by appropriate substitutions in some simpler identity. Example. Prove that $$2\Pi \cos (\beta + \gamma) + \Pi \cos 2\alpha = \Sigma \cos 2\alpha \cos^2(\beta + \gamma).$$ In Example 5, Art. 133, we have proved that $$4\cos\alpha\cos\beta\cos\gamma = \Sigma\cos(\beta + \gamma - \alpha) + \cos(\alpha + \beta + \gamma).$$ In this identity first replace α , β , γ by $\beta + \gamma$, $\gamma + \alpha$, $\alpha + \beta$ respectively, and secondly replace α , β , γ by 2α , 2β , 2γ respectively. Thus $$8\Pi \cos (\beta + \gamma) = 2\Sigma \cos 2\alpha + 2\cos 2(\alpha + \beta + \gamma),$$ and $4\Pi \cos 2\alpha = \Sigma \cos 2(\beta + \gamma - \alpha) + \cos 2(\alpha + \beta + \gamma);$ whence by addition $8\Pi \cos (\beta + \gamma) + 4\Pi \cos 2\alpha$ $= 2\Sigma \cos 2\alpha + \Sigma \cos 2(\beta + \gamma - \alpha) + 3\cos 2(\alpha + \beta + \gamma)$ $$= 2\Sigma \cos 2\alpha + \Sigma \cos 2 (\beta + \gamma - \alpha) + 3 \cos 2 (\alpha + \beta + \gamma)$$ $$= 2\Sigma \cos 2\alpha + \Sigma \left\{\cos 2 (\beta + \gamma - \alpha) + \cos 2 (\alpha + \beta + \gamma)\right\}$$ $$= 2\Sigma \cos 2\alpha + 2\Sigma \cos 2 (\beta + \gamma) \cos 2\alpha$$ $$= 2\Sigma \cos 2\alpha \left\{1 + \cos 2 (\beta + \gamma)\right\}$$ $$= 4\Sigma \cos 2\alpha \cos^2(\beta + \gamma);$$ $$\therefore 2\Pi \cos(\beta + \gamma) + \Pi \cos 2\alpha = \Sigma \cos 2\alpha \cos^2(\beta + \gamma).$$ 313. Suppose that A'B'C' is the pedal triangle of ABC, and let the sides and angles of the pedal triangle be denoted by a', b', c', and A', B', C', and its circum-radius by R'. Then from Arts. 224 and 225, we have $$a' = a \cos A$$, $b' = b \cos B$, $c' = c \cos C$, $R' = \frac{R}{2}$, $A' = 180^{\circ} - 2A$, $B' = 180^{\circ} - 2B$, $C' = 180^{\circ} - 2C$. By means of these relations, we may from any identity proved for the triangle ABC derive another, as in the following case. In the triangle ABC, we know that $$\sum a \cos A = 4R \sin A \sin B \sin C$$; hence in the pedal triangle A'B'C', $$\sum a' \cos A' = 4R' \sin A' \sin B' \sin C';$$ $$\therefore \Sigma a \cos A \cos (180^{\circ} - 2A) = 2R \text{H sin} (180^{\circ} - 2A);$$ that is, $-\sum a \cos A \cos 2A = 2R \sin 2A \sin 2B \sin 2C$, Example. In any triangle ABC, shew that $$\frac{a^2\cos^2 A - b^2\cos^2 B - c^2\cos^2 C}{2bc\cos B\cos C} = \cos 2A.$$ In the pedal triangle A'B'C', we have $$\frac{b'^2 + c'^2 - a'^2}{2b'c'} = \cos A';$$ hence, by substituting the equivalents of a', b', c', A', we have $$\frac{b^2 \cos^2 B + c^2 \cos^2 C - a^2 \cos^2 A}{2bc \cos B \cos C} = \cos (180^{\circ} - 2.4) = -\cos 2A ;$$ whence the required identity follows at once. 314. If $A_1B_1C_1$ be the ex-central triangle of ABC, we may, as in the preceding article, from any identity proved for the triangle ABC derive another by means of the relations $$a_1 = a \csc \frac{A}{2}$$, $b_1 = b \csc \frac{B}{2}$, $c_1 = c \csc \frac{C}{2}$. $R_1 = 2R$, $$A_1 = 90^{\circ} - \frac{A}{2}$$, $B_1 = 90^{\circ} - \frac{B}{2}$, $C_1 = 90^{\circ} - \frac{C}{2}$. 315. The following Exercise consists of miscellaneous questions on the subject of this Chapter. ### EXAMPLES. XXIV. c. 1. Shew that $$\sum \cot (2a+\beta-3\gamma) \cot (2\beta+\gamma-3a) = 1.$$ - 2. Shew that - (1) $2\Pi \sin(\beta+\gamma) + \Pi \sin 2\alpha = \sum \sin 2\alpha \sin^2(\beta+\gamma);$ - (2) $\Pi \sin (\beta + \gamma a) + 2\Pi \sin a = \sum \sin^2 a \sin (\beta + \gamma a)$. - 3. In any triangle, prove that - (1) $a^2 \cos^2 A b^2 \cos^2 B = Rc \cos C \sin 2 (B A);$ - (2) $a^2 \csc^2 \frac{A}{2} b^2 \csc^2 \frac{B}{2} = 4Re \csc \frac{C}{2} \sin \frac{B A}{2}$; - (3) $\Sigma (b \cos B + c \cos C) \cot A = -2R\Sigma \cos 2A$. 4. If $$\sin 2\theta = 2 \sin a \sin \gamma$$, and $\cos 2\theta = \cos 2a \cos 2\beta = \cos 2\gamma \cos 2\delta$, prove that one value of $\tan \theta$ is $\tan \beta \tan \delta$. 5. If $$\tan \frac{\theta}{2} \tan \frac{\phi}{2} = \tan \frac{\gamma}{2},$$ and $\sec a \cos \theta = \sec \beta \cos \phi = \cos \gamma$, prove that $\sin^2 \gamma = (\sec a - 1)(\sec \beta - 1)$. 6. If $$\frac{\cos \theta - \cos \alpha}{\cos \theta - \cos \beta} = \frac{\sin^2 \alpha \cos \beta}{\sin^2 \beta \cos \alpha},$$ prove that one value of $\tan \frac{\theta}{2}$ is $\tan \frac{a}{2} \tan \frac{\beta}{2}$. - 7. If $\sin \theta = \cot a \tan \gamma$ and $\tan \theta = \cos a \tan \beta$, prove that one value of $\cos \theta$ is $\cos \beta \sec \gamma$. - 8. If a and β are two different values of θ which satisfy $be \cos \theta \cos \phi + ae \sin \theta \sin \phi = ab,$ prove that $$(b^2+c^2-a^2)\cos a\cos \beta + (c^2+a^2-b^2)\sin a\sin \beta = a^2+b^2-c^2$$. 9. If β and γ are two different values of θ which satisfy $\sin a \cos \theta + \cos a \sin \theta = \cos a \sin a$, prove that $$\frac{\cos\beta\cos\gamma}{\cos^2a} + \frac{\sin\beta\sin\gamma}{\sin^2a} = 1.$$ - 10. If β and γ are two different values of θ which satisfy $k^{2}\cos a\cos \theta + k(\sin a + \sin \theta) + 1 = 0,$ - prove that $k^2 \cos \beta \cos \gamma + k (\sin \beta + \sin \gamma) + 1 = 0.$ - 11. If β and γ are two different values of θ which satisfy $\frac{\cos \theta \cos \phi}{\cos^2 a} + \frac{\sin \theta \sin \phi}{\sin^2 a} + 1 = 0,$ prove that $\frac{\cos \beta \cos \gamma}{\cos^2 a} + \frac{\sin \beta \sin \gamma}{\sin^2 a} + 1 = 0.$ ## CHAPTER XXV. #### MISCELLANEOUS THEOREMS AND EXAMPLES. ### Inequalities. Maxima and Minima. 316. The methods of proving trigonometrical inequalities are in many cases identical with those by which algebraical inequalities are established. Example 1. Show that $a^2 \tan^2 \theta + b^2 \cot^2 \theta > 2ab$. We have $a^2 \tan^2 \theta + b^2 \cot^2 \theta = (a \tan \theta - b \cot \theta)^2 + 2ab$; $$\therefore a^2 \tan^2 \theta + b^2 \cot^2 \theta > 2ab$$, unless $$a \tan \theta - b \cot \theta = 0$$, or $a \tan^2 \theta = b$. In this case the inequality becomes an equality. This proposition may be otherwise expressed by saying that the minimum value of $a^2 \tan^2 \theta + b^2 \cot^2 \theta$ is 2ab. Example 2. Shew that $$1 + \sin^2 \alpha + \sin^2 \beta > \sin \alpha + \sin \beta + \sin \alpha \sin \beta$$. Since $(1 - \sin \alpha)^2$ is positive, $1 + \sin^2 \alpha > 2 \sin \alpha$; similarly and $$1 + \sin^2 \beta > 2 \sin \beta,$$ $$\sin^2 \alpha + \sin^2 \beta > 2 \sin \alpha \sin \beta.$$ Adding and dividing by 2, we have $$1 + \sin^2 \alpha + \sin^2 \beta > \sin \alpha + \sin \beta + \sin \alpha \sin \beta$$. Example 3. When is $12 \sin \theta - 9 \sin^2 \theta$ a maximum? The expression = $4 - (2 - 3 \sin \theta)^2$, and is therefore a maximum when $2 - 3 \sin \theta = 0$, so that its maximum value is 4. 317. To find the numerically greatest values of $$a\cos\theta + b\sin\theta$$. Let $a = r \cos a$ and $b = r \sin a$, so that $r^2 = a^2 + b^2$ and $\tan a = \frac{b}{a}$; then $a\cos\theta + b\sin\theta = r(\cos\theta\cos a + \sin\theta\sin a)$ = $r\cos(\theta - a)$. Thus the expression is numerically greatest when $$\cos(\theta - a) = +1$$; that is, the greatest positive value = $r = \sqrt{a^2 + b^2}$, and the numerically greatest negative value = $-r = -\sqrt{a^2 + b^2}$. Hence, if $c^2 > a^2 + b^2$, the maximum value of $a \cos \theta + b \sin \theta + c$ is $c + \sqrt{a^2 + b^2}$, and the minimum value is $c - \sqrt{a^2 + b^2}$. 318. The expression $a \cos(a+\theta) + b \cos(\beta+\theta)$ $= (a\cos a + b\cos \beta)\cos \theta - (a\sin a + b\sin \beta)\sin \theta;$ and therefore its numerically greatest values are equal to the positive and negative square roots of $(a\cos a + b\cos \beta)^2 + (a\sin a + b\sin \beta)^2$; that is, are equal to $$\pm \sqrt{a^2+b^2+2ab}\cos(a-\beta)$$. In like manner, we may find the maximum and minimum values of the sum of any number of expressions of the form $a \cos(a+\theta)$ or $a \sin(a+\theta)$. 319. If a and β are two angles, each lying between 0 and $\frac{\pi}{2}$, whose sum is given, to find the maximum value of $\cos a \cos \beta$ and of $\cos a + \cos \beta$. Suppose that $$a+\beta=\sigma$$; then $$2\cos a\cos \beta = \cos(\alpha+\beta) + \cos(\alpha-\beta)$$ $$=\cos\sigma+\cos(u-\beta),$$ and is therefore a maximum when $a-\beta=0$, or $a=\beta=\frac{\sigma}{2}$. Thus the maximum value of $\cos a \cos \beta$ is $\cos^2 \frac{\sigma}{2}$. Again, $$\cos a + \cos \beta = 2 \cos \frac{a+\beta}{2} \cos \frac{a-\beta}{2}$$ = $2 \cos \frac{\sigma}{2} \cos \frac{a-\beta}{2}$, and is therefore a maximum when $a=\beta=\frac{\sigma}{2}$. Thus the maximum value of $\cos a + \cos \beta$ is $2 \cos \frac{\sigma}{2}$. Similar theorems hold in case of the sine. Example 1. If A, B, C are the angles of a triangle, find the maximum value of $\sin A + \sin B + \sin C$ and of $\sin A \sin B \sin C$. Let us suppose that C remains constant, while A and B vary. $$\sin A + \sin B + \sin C = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2} + \sin C$$ $$= 2 \cos \frac{C}{2} \cos \frac{A-B}{2} + \sin C.$$ This expression is a maximum when A = B. Hence, so long as any two of the angles A, B, C are unequal, the expression $\sin A + \sin B + \sin C$ is not a maximum; that is, the expression is a maximum when $A = B = C = 60^{\circ}$. Thus the maximum value = $3 \sin 60^{\circ} = \frac{3\sqrt{3}}{2}$. Again, $$2 \sin A \sin B \sin C = \{\cos (A - B) - \cos (A + B)\} \sin C = \{\cos (A - B) + \cos C\} \sin C.$$ This expression is a maximum when A = B. Hence, by reasoning as before, $\sin
A \sin B \sin C$ has its maximum value when $A = B = C = 60^{\circ}$. Thus the maximum value = $\sin^3 60^\circ = \frac{3\sqrt{3}}{8}$. Example 2. If α and β are two angles, each lying between 0 and $\frac{\pi}{2}$, whose sum is constant, find the minimum value of $\sec \alpha + \sec \beta$. We have $$\sec \alpha + \sec \beta = \frac{1}{\cos \alpha} + \frac{1}{\cos \beta} = \frac{\cos \alpha + \cos \beta}{\cos \alpha \cos \beta}$$ $$= \frac{4 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}}{\cos (\alpha + \beta) + \cos (\alpha - \beta)} = \frac{2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}}{\cos^2 \frac{\alpha - \beta}{2} - \sin^2 \frac{\alpha + \beta}{2}}$$ $$= \cos \frac{\alpha + \beta}{2} \left(\frac{1}{\cos \frac{\alpha - \beta}{2} + \sin \frac{\alpha + \beta}{2}} + \frac{1}{\cos \frac{\alpha - \beta}{2} - \sin \frac{\alpha + \beta}{2}} \right).$$ Since $\alpha + \beta$ is constant, this expression is least when the denominators are greatest; that is, when $\alpha = \beta = \frac{\alpha + \beta}{2}$. Thus the minimum value is $2 \sec \frac{\alpha + \beta}{2}$. 320. If $a, \beta, \gamma, \delta, \ldots$ are n angles, each lying between 0 and $\frac{\pi}{2}$, whose sum is constant, to find the maximum value of $\cos a \cos \beta \cos \gamma \cos \delta \dots$ Let $$a+\beta+\gamma+\delta+\ldots=\sigma$$. Suppose that any two of the angles, say a and β , are unequal; then if in the given product we replace the two unequal factors $\cos a$ and $\cos \beta$ by the two equal factors $\cos \frac{a+\beta}{2}$ and $\cos \frac{a+\beta}{2}$, the value of the product is increased while the sum of the angles remains unaltered. Hence so long as any two of the angles $a, \beta, \gamma, \delta, \ldots$ are unequal the product is not a maximum; that is, the product is a maximum when all the angles are equal. In this case each angle $=\frac{\sigma}{n}$. Thus the maximum value is $\cos^n \frac{\sigma}{n}$. In like manner we may shew that the maximum value of $\cos a + \cos \beta + \cos \gamma + \dots = n \cos \frac{\sigma}{n}$. 321. The methods of solution used in the following examples are worthy of notice. Example 1. Shew that $\tan 3\alpha \cot \alpha$ cannot lie between 3 and $\frac{1}{3}$. We have $$\tan 3\alpha \cot \alpha = \frac{\tan 3\alpha}{\tan \alpha} = \frac{3 - \tan^2 \alpha}{1 - 3 \tan^2 \alpha} = n \text{ say};$$ $$\therefore \tan^2 \alpha = \frac{n - 3}{3n - 1} = \frac{3 - n}{1 - 3n}.$$ These two fractional values of $\tan^2 \alpha$ must be positive, and therefore n must be greater than 3 or less than $\frac{1}{3}$. Example 2. If a and b are positive quantities, of which a is the greater, find the minimum value of $a \sec \theta - b \tan \theta$. Denote the expression by x, and put $\tan \theta = t$; then $$x = a \sqrt{1 + t^2} - bt;$$ $$\therefore b^2t^2 + 2bxt + x^2 = a^2 (1 + t^2);$$ $$\therefore t^2 (b^2 - a^2) + 2bxt + x^2 - a^2 = 0.$$ In order that the values of t found from this equation may be real, $$b^{2}x^{2} > (b^{2} - a^{2}) (x^{2} - a^{2});$$ $$\therefore 0 > a^{2} (a^{2} - b^{2} - x^{2});$$ $$\therefore x^{2} > a^{2} - b^{2}.$$ Thus the minimum value is $\sqrt{a^2-b^2}$. Example 3. If a, b, c, k are constant quantities and α , β , γ variable quantities subject to the relation $a \tan \alpha + b \tan \beta + c \tan \gamma = k$, find the minimum value of $\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma$. By multiplying out and re-arranging the terms, we have $(a^2 + b^2 + c^2) (\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma) - (a \tan \alpha + b \tan \beta + c \tan \gamma)^2$ $= (b \tan \gamma - c \tan \beta)^2 + (c \tan \alpha - a \tan \gamma)^2 + (a \tan \beta - b \tan \alpha)^2.$ But the minimum value of the right side of this equation is zero; hence the minimum value of $$(a^2+b^2+c^2)(\tan^2\alpha+\tan^2\beta+\tan^2\gamma)-k^2=0$$; that is, the minimum value of $$\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma = \frac{h^2}{a^2 + b^2 + c^2}$$ ### EXAMPLES. XXV. a. When θ is variable find the minimum value of the following expressions: - 1. $p \cot \theta + q \tan \theta$. - 2. $4 \sin^2 \theta + \csc^2 \theta$. - 3. $8 \sec^2 \theta + 18 \cos^2 \theta$. - 4. $3-2\cos\theta+\cos^2\theta$. Prove the following inequalities: - 5. $\tan^2 a + \tan^2 \beta + \tan^2 \gamma > \tan \beta \tan \gamma + \tan \alpha + \tan \alpha \tan \beta$. - 6. $\sin^2 a + \sin^2 \beta > 2 (\sin a + \sin \beta 1)$. When θ is variable, find the maximum value of 7. $\sin \theta + \cos \theta$. - 8. $\cos \theta + \sqrt{3} \sin \theta$. - 9. $a\cos(a+\theta)+b\sin\theta$. - 10. $p\cos\theta + q\sin(a+\theta)$. If $\sigma = a + \beta$, where a and β are two angles each lying between 0 and $\frac{\pi}{2}$, and σ is constant, find the maximum or minimum value of - 11. $\sin a + \sin \beta$. - 12. $\sin a \sin \beta$. - 13. $\tan a + \tan \beta$. - 14. $\csc a + \csc \beta$. If A, B, C are the angles of a triangle, find the maximum or minimum value of - 15. $\cos A \cos B \cos C$. - 16. $\cot A + \cot B + \cot C$ - 17. $\sin^2 \frac{A}{2} + \sin^2 \frac{B}{2} + \sin^2 \frac{C}{2}$. 18. $\sec A + \sec B + \sec C$. - 19. $\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2}$. $\left[Use \sum \tan \frac{B}{2} \tan \frac{C}{2} = 1. \right]$ - 20. $\cot^2 A + \cot^2 B + \cot^2 C$. [Use $\Sigma \cot B \cot C = 1$.] - 21. If $b^2 < 4ac$, find the maximum and minimum values of $a \sin^2 \theta + b \sin \theta \cos \theta + c \cos^2 \theta$. - **22.** If a, β, γ lie between 0 and $\frac{\pi}{2}$, shew that - $\sin a + \sin \beta + \sin \gamma > \sin (a + \beta + \gamma).$ - 23. If a and b are two positive quantities of which a is the greater, shew that $a \csc \theta > b \cot \theta + \sqrt{a^2 b^2}$. - **24.** Show that $\frac{\sec^2 \theta \tan \theta}{\sec^2 \theta + \tan \theta}$ lies between 3 and $\frac{1}{3}$. - **25.** Find the maximum value of $\frac{\tan^2 \theta \cot^2 \theta + 1}{\tan^2 \theta + \cot^2 \theta 1}$. - **26.** If a, b, c, k are constant positive quantities, and a, β, γ variable quantities subject to the relation $$a\cos a + b\cos \beta + c\cos \gamma = k$$, find the minimum value of $\cos^2 a + \cos^2 \beta + \cos^2 \gamma$ and of $a \cos^2 a + b \cos^2 \beta + c \cos^2 \gamma$. ### Elimination. 322. No general rules can be given for the elimination of some assigned quantity or quantities from two or more trigonometrical equations. The form of the equations will often suggest special methods, and in addition to the usual algebraical artifices we shall always have at our disposal the identical relations subsisting between the trigonometrical functions. Thus suppose it is required to eliminate θ from the equations $$x\cos\theta = a$$, $y\cot\theta = b$. Here $$\sec \theta = \frac{x}{a}$$, and $\tan \theta = \frac{y}{b}$; but for all values of θ , we have $$\sec^2 \theta - \tan^2 \theta = 1$$ by substitution, $$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$ From this example we see that since θ satisfies two equations (either of which is sufficient to determine θ) there is a relation, independent of θ , which subsists between the coefficients and constants of the equations. To determine this relation we eliminate θ , and the result is called the *eliminant* of the given equations. 323. The following examples will illustrate some useful methods of elimination. Example 1. Eliminate θ between the equations $$l\cos\theta + m\sin\theta + n = 0$$ and $p\cos\theta + q\sin\theta + r = 0$. From the given equations, we have by cross multiplication $$\frac{\cos \theta}{mr - nq} = \frac{\sin \theta}{np - lr} = \frac{1}{lq - mp};$$ $$\therefore \cos \theta = \frac{mr - nq}{lq - mp}, \text{ and } \sin \theta = \frac{np - lr}{lq - mp};$$ whence by squaring, adding, and clearing of fractions, we obtain $$(mr - nq)^2 + (np - lr)^2 = (lq - mp)^2$$. The particular instance in which q=l and p=-m is of frequent occurrence in Analytical Geometry. In this case the eliminant may be written down at once; for we have $l\cos\theta + m\sin\theta = -n,$ $l\sin\theta - m\cos\theta = -r.$ and whence by squaring and adding, we obtain $$l^2 + m^2 = n^2 + r^2$$ Example 2. Eliminate θ between the equations $$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = c^2$$ and $l \tan\theta = m$. From the second equation, we have $$\frac{\sin \theta}{m} = \frac{\cos \theta}{l} = \frac{\sqrt{\sin^2 \theta + \cos^2 \theta}}{\sqrt{m^2 + l^2}} = \frac{1}{\sqrt{m^2 + l^2}};$$ $$\therefore \sin \theta = \frac{m}{\sqrt{m^2 + l^2}}, \text{ and } \cos \theta = \frac{l}{\sqrt{m^2 + l^2}}.$$ By substituting in the first equation, we obtain $$\frac{ax}{l} - \frac{by}{m} = \frac{c^2}{\sqrt{m^2 + l^2}}.$$ Example 3. Eliminate θ between the equations $x = \cot \theta + \tan \theta$ and $y = \sec \theta - \cos \theta$. From the given equations, we have $$x = \frac{1}{\tan \theta} + \tan \theta = \frac{1 + \tan^2 \theta}{\tan \theta}$$ $$= \frac{\sec^2 \theta}{\tan \theta},$$ $$y = \sec \theta - \frac{1}{\sec \theta} = \frac{\sec^2 \theta - 1}{\sec \theta}$$ and From these values of x and y we obtain $$x^2y = \sec^3 \theta$$ and $xy^2 = \tan^3 \theta$. But $$\sec^2 \theta - \tan^2 \theta = 1 ;$$ $$\therefore (x^2 u)^{\frac{2}{3}} - (x u^2)^{\frac{2}{3}} = 1 ;$$ that is. $$x^{\frac{4}{3}}y^{\frac{2}{3}} - x^{\frac{2}{3}}y^{\frac{4}{3}} = 1.$$ Example 4. Eliminate θ from the equations $$\frac{x}{\theta} = \cos \theta + \cos 2\theta$$ and $\frac{y}{h} = \sin \theta + \sin 2\theta$. From the given equations, we have $$\frac{x}{a} = 2\cos\frac{3\theta}{2}\cos\frac{\theta}{2},$$ and $$\frac{y}{b} = 2\sin\frac{3\theta}{2}\cos\frac{\theta}{2};$$ whence by squaring and adding, we obtain $$\frac{x^2}{c^2} + \frac{y^2}{b^2} = 4\cos^2\frac{\theta}{2}.$$ But $$\frac{x}{a} = 2\cos\frac{\theta}{2} \left(4\cos^3\frac{\theta}{2} -
3\cos\frac{\theta}{2} \right)$$ $$= 2\cos^2\frac{\theta}{2} \left(4\cos^3\frac{\theta}{2} - 3 \right);$$ $$\therefore \frac{2x}{a} = \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right) \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 3 \right).$$ 324. The following examples are instances of the elimination of two quantities, Example 1. Eliminate θ and ϕ from the equations $a \sin^2 \theta + b \cos^2 \theta = m$, $b \sin^2 \phi + a \cos^2 \phi = n$, $a \tan \theta = b \tan \phi$. From the first equation, we have $$a \sin^{2} \theta + b \cos^{2} \theta = m \left(\sin^{2} \theta + \cos^{2} \theta \right);$$ $$\therefore (a - m) \sin^{2} \theta = (m - b) \cos^{2} \theta;$$ $$\therefore \tan^{2} \theta = \frac{m - b}{a - m}.$$ From the second equation, we have $$b \sin^2 \phi + a \cos^2 \phi = n \left(\sin^2 \phi + \cos^2 \phi \right);$$ $$\therefore \tan^2 \phi = \frac{n-a}{b-a}.$$ $a^2 \tan^2 \theta = b^2 \tan^2 \phi$: From the third equation, $$\therefore \frac{a^{2}(m-b)}{a-m} = \frac{b^{2}(n-a)}{b-n};$$ $$\therefore a^{2}(bm-b^{2}-mn+bn) = b^{2}(an-a^{2}-mn+am);$$ $$\therefore mab(a-b)+nab(a-b) = mn(a^{2}-b^{2});$$ $$\therefore mab+nab = mn(a+b);$$ $$\therefore \frac{1}{n} + \frac{1}{m} = \frac{1}{a} + \frac{1}{b}.$$ Example 2. Eliminate θ and ϕ from the equations $$x\cos\theta + y\sin\theta = x\cos\phi + y\sin\phi = 2a$$, $2\sin\frac{\theta}{2}\sin\frac{\phi}{2} = 1$. From the data, we see that θ and ϕ are the roots of the equation $x \cos \alpha + u \sin \alpha = 2a$; $$(x \cos \alpha - 2a)^2 = y^2 \sin^2 \alpha = y^2 (1 - \cos^2 \alpha);$$ $$(x^2+y^2)\cos^2\alpha - 4ax\cos\alpha + 4a^2 - y^2 = 0$$ which is a quadratic in $\cos \alpha$ with roots $\cos \theta$ and $\cos \phi$. But $$1 = 4 \sin^2 \frac{\theta}{2} \sin^2 \frac{\phi}{2} = (1 - \cos \theta) (1 - \cos \phi);$$ whence $\cos \theta + \cos \phi = \cos \theta \cos \phi$; $$\therefore \frac{4ax}{x^2 + y^2} = \frac{4a^2 - y^2}{x^2 + y^2};$$ $$\therefore y^2 = 4a (a - x).$$ 325. The method exhibited in the following example is one frequently used in Analytical Geometry. Example. If a, b, c are unequal, find the relations that hold between the coefficients, when $$a\cos\theta + b\sin\theta = c$$. and $$a\cos^2\theta + 2a\cos\theta\sin\theta + b\sin^2\theta = c.$$ The required relation will be obtained by eliminating θ from the given equations. This is most conveniently done by making each equation homogeneous in $\sin \theta$ and $\cos \theta$. From the first equation, we have $$a\cos\theta + b\sin\theta = c\sqrt{\cos^2\theta + \sin^2\theta};$$ whence, by squaring and transposing, $$(a^2-c^2)\cos^2\theta + 2ab\cos\theta\sin\theta + (b^2-c^2)\sin^2\theta = 0$$(1). From the second equation, we have $$a\cos^2\theta + 2a\cos\theta\sin\theta + b\sin^2\theta = c(\cos^2\theta + \sin^2\theta);$$ $$\therefore (a-c)\cos^2\theta + 2a\cos\theta\sin\theta + (b-c)\sin^2\theta = 0 \dots (2).$$ From (1) and (2) we have by cross-multiplication, $$\frac{\cos^2 \theta}{2ab(b-c) - 2a(b^2 - c^2)} = \frac{\cos \theta \sin \theta}{(b^2 - c^2)(a-c) - (a^2 - c^2)(b-c)}$$ $$= \frac{\sin^2 \theta}{2a(a^2 - c^2) - 2ab(a-c)};$$ or $\frac{\cos^2 \theta}{-2ac(b-c)} = \frac{\cos \theta \sin \theta}{(b-c)(a-c)(b-a)} = \frac{\sin^2 \theta}{2a(a-c)(a+c-b)};$ $\therefore -4a^2c(b-c)(a-c)(a+c-b) = (b-c)^2(a-c)^2(b-a)^2.$ By supposition, the quantities a, b, c are unequal; hence dividing by (b-c) (a-c), we obtain $$4a^2c(a+c-b)+(b-c)(a-c)(a-b)^2=0.$$ ### EXAMPLES. XXV. b. Eliminate θ between the equations: 1. $$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$$, $\frac{x}{a}\sin\theta - \frac{y}{b}\cos\theta = 1$. - 2. $a \sec \theta x \tan \theta = y$, $b \sec \theta + y \tan \theta = x$. - 3. $\cos \theta + \sin \theta = a$, $\cos 2\theta = b$, - 4. $x = \sin \theta + \cos \theta$, $y = \tan \theta + \cot \theta$. - 5. $u = \cot \theta + \cos \theta$, $b = \cot \theta \cos \theta$. Find the eliminant in each of the following cases: - 6. $x = \cot \theta + \tan \theta$, $y = \csc \theta \sin \theta$. - 7. $\csc \theta \sin \theta = a^3$, $\sec \theta \cos \theta = b^3$. - 8, $4x = 3a\cos\theta + a\cos 3\theta$, $4y = 3a\sin\theta a\sin 3\theta$. - 9. $x = \tan^2 \theta (a \tan \theta x), \quad y = \sec^2 \theta (y a \sec \theta).$ - 10. $x = a \cos \theta (2 \cos 2\theta 1), \quad y = b \sin \theta (4 \cos^2 \theta 1).$ - 11. If $\cos(\theta a) = a$, and $\sin(\theta \beta) = b$, shew that $a^2 = 2ab\sin(a \beta) + b^2 = \cos^2(a \beta)$. Find the relation that must hold between x and y if - 12. $x+y=3=\cos 4\theta$, $x-y=4\sin 2\theta$. - 13. $x = \sin \theta + \cos \theta \sin 2\theta$, $y = \cos \theta + \sin \theta \sin 2\theta$. - 14. If $\sin \theta + \cos \theta = a$, and $\sin 2\theta + \cos 2\theta = b$, shew that $(a^2 b 1)^2 = a^2 (2 a^2)$. - 15. If $\cos \theta \sin \theta = b$, and $\cos 3\theta + \sin 3\theta = a$, shew that $a = 3b 2b^3$. - 16. Eliminate θ from the equations: $a\cos\theta - b\sin\theta = c$, $2ab\cos2\theta + (a^2 - b^2)\sin2\theta = 2c^2$. - 17. If $x = a \cos \theta + b \cos 2\theta$, and $y = a \sin \theta + b \sin 2\theta$, shew that $a^2 \{(x+b)^2 + y^2\} = (x^2 + y^2 b^2)^2$. 18. If $$\frac{\tan(\theta+a)}{\tan(\theta-a)} = \frac{a+b}{a-b}$$, and $a\cos 2a + b\cos 2\theta = c$, shew that $a^2 + c^2 - 2ac\cos 2a = b^2$. 19. If $$x = a (\sin 3\theta - \sin \theta)$$, and $y = a (\cos \theta - \cos 3\theta)$, shew that $(x^2 + y^2)(2a^2 - x^2 - y^2)^2 = 4a^4x^2$. Eliminate θ from the equations: 20. $$x\cos\theta - y\sin\theta = a\cos 2\theta$$, $x\sin\theta + y\cos\theta - 2a\sin 2\theta$. **21.** $$x \sin \theta - y \cos \theta = \sqrt{x^2 + y^2}$$, $\frac{\cos^2 \theta}{\alpha^2} + \frac{\sin^2 \theta}{b^2} = \frac{1}{x^2 + y^2}$. 22. $$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1, \quad x\sin\theta - y\cos\theta = \sqrt{a^2\sin^2\theta} + b^2\cos^2\theta.$$ 23. If $$\cos(a-3\theta)=m\cos^3\theta$$, and $\sin(a-3\theta)=m\sin^3\theta$, shew that $m^2+m\cos a=2$. Eliminate θ and ϕ from the equations: - 24. $\tan \theta + \tan \phi = x$, $\cot \theta + \cot \phi = y$, $\theta + \phi = a$. - 25. $\sin \theta + \sin \phi = a$, $\cos \theta + \cos \phi = b$, $\theta \phi = a$. - 26. $a\sin^2\theta + b\cos^2\theta = a\cos^2\phi + b\sin^2\phi = 1$, $a\tan\theta = b\tan\phi$. 27. If $$\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = \frac{x}{a}\cos\phi + \frac{y}{b}\sin\phi = 1$$, and $\theta = \phi = a$, shew that $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \sec^2\frac{a}{2}.$$ 28. If $\tan \theta + \tan \phi = a$, $\cot \theta + \cot \phi = b$, $\theta - \phi = a$, shew that $ab(ab-4) = (a+b)^2 \tan^2 a$. Eliminate θ and ϕ between the equations: - 29. $a\cos^2\theta + b\sin^2\theta = m\cos^2\phi$, $a\sin^2\theta + b\cos^2\theta = n\sin^2\phi$, $m\tan^2\theta n\tan^2\phi = 0$. - 30. $x \cos \theta + y \sin \theta = 2a \sqrt{3}$, $x \cos (\theta + \phi) + y \sin (\theta + \phi) = 4a$, $x \cos (\theta \phi) + y \sin (\theta \phi) = 2a$. - 31. $a\sin\theta = a\sin(\theta + \phi)$, $a\sin\phi = b\sin\theta$, $\cos\theta \cos\phi = 2m$. # Application of Trigonometry to the Theory of Equations. 326. In the Theory of Equations it is shewn that the solution of any cubic equation may be made to depend on the solution of a cubic equation of the form $x^3 + ax + b = 0$. In certain cases the solution is very conveniently obtained by Trigonometry. ### 327. Consider the equation $$x^3 - qx - r = 0$$(1), in which each of the letters q and r represents a positive quantity. From the identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$, we have $\cos^3 \theta - \frac{3}{4} \cos \theta - \frac{\cos 3\theta}{4} = 0$(2). Let $x = y \cos \theta$, where y is a positive quantity; then from (1), $$\cos^3 \theta - \frac{q}{y^2} \cos \theta - \frac{r}{y^3} = 0....(3).$$ If the equations (2) and (3) are identical, we have $\frac{q}{y^2} = \frac{3}{4}$, so that $$y = +\sqrt{\frac{4q}{3}}$$, since y is positive; and $$\frac{\cos 3\theta}{4} = \frac{r}{y^3} = \sqrt{\frac{27r^2}{64q^3}};$$ whence $$\cos 3\theta = \sqrt{\frac{27r^2}{4q^3}}.$$ Hence the values of θ are real if $27r^2 < 4q^3$; that is, if $\left(\frac{r}{2}\right)^2 < \left(\frac{q}{3}\right)^3$. Let a be the smallest angle whose cosine is equal to $\sqrt{\frac{27r^2}{4q^3}}$; then $\cos 3\theta = \cos a$; whence $3\theta = 2n\pi \pm a$. Thus the values of $\cos \theta$ are $$\cos \frac{a}{3}$$, $\cos \frac{2\pi + a}{3}$, $\cos \frac{2\pi - a}{3}$. [See Art. 264.] XXV.] $$x = y \cos \theta = \sqrt{\frac{4q}{3}} \cos \theta,$$ and therefore the roots of $x^3 - qx - r = 0$ are $$\sqrt{\frac{4q}{3}}\cos a$$, $\sqrt{\frac{4q}{3}}\cos \frac{2\pi+a}{3}$, $\sqrt{\frac{4q}{3}}\cos \frac{2\pi-a}{3}$. 328. Following the method explained in the preceding article, we may use the identity $$\sin^3\theta - \frac{3}{4}\sin\theta + \frac{\sin 3\theta}{4} = 0$$ to obtain the solution of the equation $$x^3 - qx + r = 0$$, each of the quantities represented by q and r being positive. Example. Solve the equation $x^3 - 12x + 8 = 0$. We have $$\sin^3\theta - \frac{3}{4}\sin\theta + \frac{\sin 3\theta}{4} = 0.$$ In the given equation put $x = y \sin \theta$, where y is positive; then $$\sin^3 \theta - \frac{12}{y^2} \sin \theta + \frac{8}{y^3} = 0.$$ $\therefore \frac{3}{4} = \frac{12}{y^2}$; whence $y = 4$; and $$\frac{\sin 3\theta}{4} = \frac{8}{y^3} = \frac{1}{8}; \text{ whence } \sin 3\theta = \frac{1}{2}.$$ Suppose that θ is estimated in sexagesimal measure; then $3\theta = n$, $180^{\circ} + (-1)^{n} 30^{\circ}$. . (-, -- By ascribing to $$n$$ the values 0, 1, 2, 3, 4 we obtain $\theta = 10^{\circ}$, $\theta = 50^{\circ}$, $\theta = 130^{\circ}$, $\theta = 170^{\circ}$, $\theta = 250^{\circ}$; and by further ascribing to n the values 5, 6, 7, ... it will easily be seen that the values of $\sin \theta$ are equal to some
one of the three quantities $$\sin 10^{\circ}$$, $\sin 50^{\circ}$, $-\sin 70^{\circ}$. But $x = y \sin \theta = 4 \sin \theta$, and therefore the roots are ## Application of the Theory of Equations to Trigonometry. 329. In the Theory of Equations it is shewn that the equation whose roots are $a_1, a_2, a_3, \ldots, a_n$ is $$(x-a_1)(x-a_2)(x-a_3) \dots \dots (x-a_n) = 0,$$ or $$x^n - S_1 x^{n-1} + S_2 x^{n-2} - S_3 x^{n-3} + \dots + (-1)^n S_n = 0,$$ where $S_1 = \text{sum of the roots}$; S_2 =sum of the products of the roots taken two at a time; S_3 =sum of the products of the roots taken three at a time; $S_n =$ product of the roots. [See Hall and Knight's Higher Algebra, Art. 538 and Art. 539.] Example 1. If a, β , γ are the values of θ which satisfy the equation $a \tan^3 \theta + (2a - x) \tan \theta + y = 0 \dots (1),$ shew that (i) if $\tan \alpha + \tan \beta = h$, then $ah^3 + (2a - x)h = y$; (ii) if $$\tan a \tan \beta = k$$, then $y^2 + (2a - x) a k^2 = a^2 k^3$. (i) From the theory of equations, we have from (1), $$\tan \alpha + \tan \beta + \tan \gamma = 0$$; $\therefore h + \tan \gamma = 0$, or $\tan \gamma = -h$. But $a \tan^3 \gamma + (2a - x) \tan \gamma + y = 0$; $$\therefore ah^3 + (2a - x)h - y = 0.$$ (ii) From the theory of equations, we have from (1), $$\tan \alpha \tan \beta \tan \gamma = -\frac{y}{a};$$ $$\therefore k \tan \gamma = -\frac{y}{a}, \text{ or } \tan \gamma = -\frac{y}{ak}.$$ Substituting in $a \tan^3 \gamma + (2a - x) \tan \gamma + y = 0$, we have $$\frac{ay^3}{a^3k^3} - (2a - x)\frac{y}{ak} + y = 0;$$ $$y^2 + (2a - x) ak^2 - a^2k^3 = 0.$$ XXV.] Example 2. Shew that $$\cos^2\alpha + \cos^2\left(\frac{2\pi}{3} + \alpha\right) + \cos^2\left(\frac{2\pi}{3} - \alpha\right) = \frac{3}{2}.$$ Suppose that $$\cos 3\theta = k$$; then $$4\cos^3\theta - 3\cos\theta = \cos 3\theta = k;$$ $$\therefore \cos^3\theta - \frac{3}{4}\cos\theta - \frac{k}{4} = 0.$$ The roots of this cubic in $\cos \theta$ are $$\cos \alpha$$, $\cos \left(\frac{2\pi}{3} + \alpha\right)$, and $\cos \left(\frac{2\pi}{3} - \alpha\right)$, where a is any angle which satisfies the equation $\cos 3a = k$. For shortness, denote the roots by a, b, c; then $$a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(bc+ca+ab)$$ $$=0-2\left(-\frac{3}{4}\right);$$ $$\therefore \cos^2 \alpha + \cos^2 \left(\frac{2\pi}{3} + \alpha\right) + \cos^2 \left(\frac{2\pi}{3} - \alpha\right) = \frac{3}{2}.$$ 330. If $5\theta = 2n\pi$, where n is any integer, we have $$3\theta = 2n\pi - 2\theta$$: $$\therefore \sin 3\theta = -\sin 2\theta.$$ The values of $\sin \theta$ found from this equation are $$0, \sin\frac{2\pi}{5}, \sin\frac{4\pi}{5}, \sin\frac{6\pi}{5}, \sin\frac{8\pi}{5},$$ being obtained by giving to n the values 0, 1, 2, 3, 4. It will easily be seen that no new values of $\sin \theta$ are obtained by ascribing to n the values 5, 6, 7, But $$\sin \frac{6\pi}{5} = -\sin \frac{4\pi}{5} = -\sin \frac{\pi}{5},$$ and $$\sin\frac{8\pi}{5} = -\sin\frac{2\pi}{5};$$ hence rejecting the zero solution, the values of $\sin \theta$ found from the equation $\sin 3\theta = -\sin 2\theta$ are $$\pm \sin \frac{\pi}{5}$$, and $\pm \sin \frac{2\pi}{5}$. If we put $\sin \theta = x$, the equation $\sin 3\theta = -\sin 2\theta$ becomes $$3x - 4x^3 = -2x\sqrt{1 - x^2}.$$ Dividing by x, and thus removing the solution x=0, we have $$(3-4x^2)^2=4(1-x^2),$$ or $$16x^4 - 20x^2 + 5 = 0.$$ This is a quadratic in x^2 , and as we have just seen the values of x^2 are $$\sin^2\frac{\pi}{5}$$ and $\sin^2\frac{2\pi}{5}$. From the theory of quadratic equations, we have $$\sin^2\frac{\pi}{5} + \sin^2\frac{2\pi}{5} = \frac{20}{16} = \frac{5}{4};$$ $$\sin^2\frac{\pi}{5}\sin^2\frac{2\pi}{5} = \frac{5}{16}.$$ Example. Shew that $$\sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7} = \frac{1}{2}\sqrt{7}.$$ If $7\theta = 2n\pi$, where n is any integer, we have $$\sin 4\theta = -\sin 3\theta$$. The values of $\sin \theta$ found from this equation are $$0, \pm \sin \frac{2\pi}{7}, \pm \sin \frac{4\pi}{7}, \pm \sin \frac{8\pi}{7},$$ since $$\sin\frac{6\pi}{7} = -\sin\frac{8\pi}{7}.$$ If $\sin \theta = x$, the equation $\sin 4\theta = -\sin 3\theta$ becomes $$4x(1-2x^2)\sqrt{1-x^2}=4x^3-3x$$; whence rejecting the solution x=0, we obtain $$16 (1 - 4x^2 + 4x^4) (1 - x^2) = 16x^4 - 24x^2 + 9,$$ or $$64x^6 - 112x^4 + 56x^2 - 7 = 0$$(1). The values of x^2 found from this equation are $$\sin^2\frac{2\pi}{7}$$, $\sin^2\frac{4\pi}{7}$, $\sin^2\frac{8\pi}{7}$; hence $$\sin^2 \frac{2\pi}{7} + \sin^2 \frac{4\pi}{7} + \sin^2 \frac{8\pi}{7} = \frac{112}{64} = \frac{7}{4}.$$ But $$\sin \frac{2\pi}{7} \sin \frac{4\pi}{7} + \sin \frac{2\pi}{7} \sin \frac{8\pi}{7} + \sin \frac{4\pi}{7} \sin \frac{8\pi}{7}$$ = $\frac{1}{2} \left\{ \left(\cos \frac{2\pi}{7} - \cos \frac{6\pi}{7} \right) + \left(\cos \frac{6\pi}{7} - \cos \frac{10\pi}{7} \right) + \left(\cos \frac{4\pi}{7} - \cos \frac{12\pi}{7} \right) \right\}$ = 0. $$\therefore \left(\sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7}\right)^2 = \sin^2\frac{2\pi}{7} + \sin^2\frac{4\pi}{7} + \sin^2\frac{8\pi}{7} = \frac{7}{4};$$ $$\therefore \sin\frac{2\pi}{7} + \sin\frac{4\pi}{7} + \sin\frac{8\pi}{7} = \frac{1}{2}\sqrt{7}.$$ 331. If $7\theta = 2n\pi$, where n is any integer, we have $$4\theta = 2n\pi - 3\theta;$$ $$\cos 4\theta = \cos 3\theta$$. By giving to n the values 0, 1, 2, 3, the values of $\cos \theta$ obtained from this equation are 1, $$\cos \frac{2\pi}{7}$$, $\cos \frac{4\pi}{7}$, $\cos \frac{6\pi}{7}$. It will easily be seen that no new values of $\cos \theta$ are found by ascribing to n the values 4, 5, 6, 7,; for $$\cos \frac{8\pi}{7} = \cos \frac{6\pi}{7}$$, $\cos \frac{10\pi}{7} = \cos \frac{4\pi}{7}$, Now $\cos 4\theta = 8 \cos^4 \theta - 8 \cos^2 \theta + 1$, and therefore if $x = \cos \theta$, the equation $\cos 4\theta = \cos 3\theta$ becomes $$8x^4 - 8x^2 + 1 = 4x^3 - 3x,$$ $8x^4 - 4x^3 - 8x^2 + 3x + 1 = 0.$ Removing the factor x-1, which corresponds to the root $\cos \theta = 1$, we obtain $$8x^3 + 4x^2 - 4x - 1 = 0,$$ the roots of which equation are or $$\cos\frac{2\pi}{7}$$, $\cos\frac{4\pi}{7}$, $\cos\frac{6\pi}{7}$. Example 1. Find the values of $$\tan^2\frac{\pi}{7} + \tan^2\frac{2\pi}{7} + \tan^2\frac{3\pi}{7}$$ and $\tan\frac{\pi}{7}\tan\frac{2\pi}{7}\tan\frac{3\pi}{7}$. If $7\theta = n\pi$, where n is any integer, we have $$\tan 4\theta = -\tan 3\theta.$$ By writing $\tan \theta = t$, this equation becomes $$\frac{4t - 4t^3}{1 - 6t^2 + t^4} = -\frac{3t - t^3}{1 - 3t^2},$$ or $$t^6 - 21t^4 + 35t^2 - 7 = 0.$$ The roots of this cubic in t^2 are $$\tan^2 \frac{\pi}{7}$$, $\tan^2 \frac{2\pi}{7}$, $\tan^2 \frac{3\pi}{7}$. $\therefore \tan^2 \frac{\pi}{7} + \tan^2 \frac{2\pi}{7} + \tan^2 \frac{3\pi}{7} = 21$, $\tan \frac{\pi}{7} \tan \frac{2\pi}{7} - \tan \frac{3\pi}{7} = \sqrt{7}$, and Example 2. Shew that $$\cos^4\frac{\pi}{7} + \cos^4\frac{2\pi}{7} + \cos^4\frac{3\pi}{7} = \frac{13}{16};$$ and $$\sec^4\frac{\pi}{7} + \sec^4\frac{2\pi}{7} + \sec^4\frac{3\pi}{7} = 416.$$ Let y denote any one of the quantities $$\cos^2\frac{\pi}{7}$$, $\cos^2\frac{2\pi}{7}$, $\cos^2\frac{3\pi}{7}$; then 2y = 1 + x, where x denotes one of the quantities $$\cos\frac{2\pi}{7}$$, $\cos\frac{4\pi}{7}$, $\cos\frac{6\pi}{7}$. From Art. 331, the equation whose roots are $$\cos\frac{2\pi}{7}\,,\quad\cos\frac{4\pi}{7}\,,\quad\cos\frac{6\pi}{7}$$ is $$8x^3 + 4x^2 - 4x - 1 = 0$$; whence by substituting x=2y-1, it follows that $$\cos^2 \frac{\pi}{7}$$, $\cos^2 \frac{2\pi}{7}$, $\cos^2 \frac{3\pi}{7}$ are the roots of the equation $$8(2y-1)^3+4(2y-1)^2-4(2y-1)-1=0,$$ or $$64y^3 - 80y^2 + 24y - 1 = 0.$$ $$\therefore \cos^2 \frac{\pi}{7} + \cos^2 \frac{2\pi}{7} + \cos^2 \frac{2\pi}{7} = \frac{80}{64} = \frac{5}{4};$$ and $$\Sigma \cos^2 \frac{\pi}{7} \cos^2 \frac{2\pi}{7} = \frac{24}{64} = \frac{3}{8}.$$ By squaring the first of these equations and subtracting twice the second equation, we have $$\cos^4\frac{\pi}{7} + \cos^4\frac{2\pi}{7} + \cos^4\frac{3\pi}{7} = \frac{13}{16}.$$ By putting $z = \frac{1}{y}$, we see that $$\sec^2 \frac{\pi}{7}$$, $\sec^2 \frac{2\pi}{7}$, $\sec^2 \frac{3\pi}{7}$ are the roots of the equation $$z^3 - 24z^2 + 80z - 64 = 0$$; $$\therefore \sec^4 \frac{\pi}{7} + \sec^4 \frac{2\pi}{7} + \sec^4 \frac{3\pi}{7} = (24)^2 - (2 \times 80) = 416.$$ 332. To find $\cos 5\theta$ and $\sin 5\theta$, we may proceed as follows: $$\cos 5\theta + \cos \theta = 2\cos 3\theta\cos 2\theta$$ $$= (4\cos^3\theta - 3\cos\theta)(4\cos^2\theta - 2);$$ $$\therefore \cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$$ $\sin 5\theta + \sin \theta = 2 \sin 3\theta \cos 2\theta$ $$= (3 \sin \theta - 4 \sin^3 \theta) (2 - 4 \sin^2 \theta);$$ $$\sin 5\theta = 16 \sin^5 \theta - 20 \sin^3 \theta + 5 \sin \theta.$$ It is easy to prove that $$\cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1,$$ and $$\sin 6\theta = \cos \theta (32 \sin^5 \theta - 32 \sin^3 \theta + 6 \sin \theta)$$. #### EXAMPLES. XXV. c. Solve the following equations: 1. $x^3 - 3x - 1 = 0$. - 2. $x^3 3x + 1 = 0$. - 3. $x^3 3x \frac{1}{2} = 0$. - 4. $8x^3 6x + \sqrt{2} = 0$. - 5. $8a^3x^3 6ax + 2\sin 3A = 0$. 6. $x^3 3a^2x 2a^3\cos 3A = 0$. - 7. If $\sin a$ and $\sin \beta$ are the roots of the equation $a \sin^2 \theta + b \sin \theta + c = 0$, show that (1) if $\sin \alpha + 2 \sin \beta = 1$, then $\alpha^2 + 2b^2 + 3ab + ac = 0$, (2) if $c \sin \alpha = a \sin \beta$, then $\alpha + c = \pm b$. - If $\tan a$ and $\tan \beta$ are the roots of the equation $a \tan^2 \theta - b \tan \theta + c = 0$, and if $a \tan a + b \tan \beta = 2b$, $b^2(2a-b)+c(a-b)^2=0$. shew that - If $\tan a$, $\tan \beta$, $\tan \gamma$ are the roots of the equation $a \tan^3 \theta + (2a - x) \tan \theta + y = 0$, and if $a(\tan^2 a + \tan^2 \beta) = 2x - 5a$, shew that $x \pm y = 3a$. If $\cos a$, $\cos \beta$, $\cos \gamma$
are the roots of the equation $\cos^3 \theta + a \cos^2 \theta + b \cos \theta + c = 0$, and if $\cos a (\cos \beta + \cos \gamma) = 2b$, prove that $abc + 2b^3 + c^2 = 0$. Prove the following identities: 11. $$\sec a + \sec \left(\frac{2\pi}{3} + a\right) + \sec \left(\frac{2\pi}{3} - a\right) = -3 \sec 3a$$. 12. $$\sin^2 a + \sin^2 \left(\frac{2\pi}{3} + a\right) + \sin^2 \left(\frac{4\pi}{3} + a\right) = \frac{3}{2}$$. 13. $$\operatorname{cosec} a + \operatorname{cosec} \left(\frac{2\pi}{3} + a\right) + \operatorname{cosec} \left(\frac{4\pi}{3} + a\right) = 3 \operatorname{cosec} 3a$$. 14. $$\csc^2 \frac{\pi}{5} + \csc^2 \frac{2\pi}{5} = 4$$. 15. $$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$$, and $\cos \frac{2\pi}{5} \cos \frac{4\pi}{5} = -\frac{1}{4}$. - 16. Form the equation whose roots are - (1) $\cos \frac{\pi}{7}$, $\cos \frac{3\pi}{7}$, $\cos \frac{5\pi}{7}$; - (2) $\sin^2\frac{\pi}{14}$, $\sin^2\frac{3\pi}{14}$, $\sin^2\frac{5\pi}{14}$. - 17. Form the equation whose roots are $$\sin^2\frac{\pi}{7}$$, $\sin^2\frac{2\pi}{7}$, $\sin^2\frac{3\pi}{7}$; and shew that $\sum_{n=1}^{n=3} \sin^4 \frac{n\pi}{7} = \frac{21}{16}$ and $\sum_{n=1}^{n=3} \csc^4 \frac{n\pi}{7} = 32$. - 18. Form the equation whose roots are - (1) $\cos \frac{2\pi}{9}$, $\cos \frac{4\pi}{9}$, $\cos \frac{6\pi}{9}$, $\cos \frac{8\pi}{9}$; - (2) $\cos \frac{\pi}{9}$, $\cos \frac{3\pi}{9}$, $\cos \frac{5\pi}{9}$, $\cos \frac{7\pi}{9}$. - 19. Form the equation whose roots are $$\cos^2\frac{\pi}{9}$$, $\cos^2\frac{2\pi}{9}$, $\cos^2\frac{3\pi}{9}$, $\cos^2\frac{4\pi}{9}$, and shew that $\sum_{n=1}^{n=4} \cos^4 \frac{n\pi}{9} = \frac{19}{16}$, and $\sum_{n=1}^{n=4} \sec^4 \frac{n\pi}{9} = 1120$. 20. Form the equation whose roots are $$\tan^2\frac{\pi}{9}$$, $\tan^2\frac{2\pi}{9}$, $\tan^2\frac{3\pi}{9}$, $\tan^2\frac{4\pi}{9}$, and shew that $\cot^2 \frac{\pi}{9} + \cot^2 \frac{2\pi}{9} + \cot^2 \frac{4\pi}{9} = 9$. - 21. Prove that - (1) $\csc^2 \frac{\pi}{7} + \csc^2 \frac{2\pi}{7} + \csc^2 \frac{3\pi}{7} = 8$; - (2) $\cos \frac{\pi}{11} \cos \frac{2\pi}{11} \cos \frac{3\pi}{11} \cos \frac{4\pi}{11} \cos \frac{5\pi}{11} = \frac{1}{32}$ ### MISCELLANEOUS EXAMPLES. I. 1. If $$a \tan a + b \tan \beta = (a+b) \tan \frac{a+\beta}{2}$$, prove that $a \cos \beta = b \cos a$. 2. If $$\frac{\sin^4 a}{a} + \frac{\cos^4 a}{b} = \frac{1}{a+b}$$, prove that $\frac{\sin^8 a}{a^3} + \frac{\cos^8 a}{b^3} = \frac{1}{(a+b)^3}$. 3. Shew that $$2\tan^{-1}\left\{\tan\frac{a}{2}\tan\left(\frac{\pi}{4}-\frac{\beta}{2}\right)\right\} = \tan^{-1}\left(\frac{\sin a\cos\beta}{\cos a + \sin\beta}\right).$$ 4. If the equation $$\frac{\sin^{2n+2}\theta}{\sin^{2n}a} + \frac{\cos^{2n+2}\theta}{\cos^{2n}a} = 1$$ is true when n=1, prove that it will be true when n is any positive integer. - 5. If $a\cos\theta + b\sin\theta = c$ and $a\cos^2\theta + b\sin^2\theta = c$, prove that $4a^2b^2 + (b-c)(a-c)(a-b)^2 = 0.$ - 6. Prove the following identities: - (i) $\sum \sin(\beta \gamma) \cos(\alpha \beta) \cos(\alpha \gamma) = -\Pi \sin(\beta \gamma)$; - (ii) $\sum \sin a \sin (\beta \gamma) \cos (\beta + \gamma a) = 0$; - (iii) $\sum \sin a \sin (\beta \gamma) \sin (\beta + \gamma a) = 2\Pi \sin (\beta \gamma)$. - 7. If P be a point within a triangle ABC, such that $\angle PAB = \angle PBC = \angle PCA = \omega$. prove that (1) $\cot \omega = \cot A + \cot B + \cot C$; (2) $\csc^2 \omega = \csc^2 A + \csc^2 B + \csc^2 C$. 8. A hill of inclination 1 in 169 faces West. Shew that a railway on it which runs S.E. has an inclination of 1 in 239. 9. Two vertical walls of equal height a are inclined to one another at an angle a. At noon the breadth of their shadows are b and c; shew that the altitude θ of the sun is given by the equation $$a^2 \sin^2 \gamma \cot^2 \theta = b^2 + c^2 + 2bc \cos \gamma$$. ### MISCELLANEOUS EXAMPLES. K. # I. (Including Chapters I VII.) - 1. Express in degrees and minutes and also in grades the vertical angle of an isosceles triangle in which each of the angles at the base is twelve times the vertical angle. - **2.** The angles of a triangle are as 4:5:6. Express them in radians. - 3. Prove that $\frac{\cot A \tan A}{\cot A + \tan A} = 1 2\sin^2 A.$ - **4.** If A is an acute angle and $\sin A = \frac{5}{13}$, find the value of $\tan A + \sec A$. - 5. The adjacent sides of a parallelogram are 15 ft, and 30 ft., and the included angle is 60°, find the length of the shorter diagonal to two places of decimals. - 6. A tower 50 ft. high stands on the edge of a cliff. From a point in a horizontal plane through the foot of the cliff, the angular elevations of the top and bottom of the tower are observed to be a and β , where $\tan a = 1.26$ and $\tan \beta = 1.185$. Find the height of the cliff. - 7. Find the length of 10 degrees of a meridian upon a globe 60 ft. in diameter. - 8. The sine of an angle is to its cosine as 8 to 15, find their actual values. 9. Find the values of θ from the equation $4 \sin^2 \theta + \sqrt{3} = 2 (1 + \sqrt{3}) \sin \theta$. 10. If $$\tan \alpha = \frac{4}{15}$$, find the value of $\frac{5 \sin \alpha + 7 \cos \alpha}{6 \cos \alpha - 3 \sin \alpha}$. - 11. Prove that $(1+\sin A + \cos A)^2 = 2(1+\sin A)(1+\cos A).$ - 12. Simplify the expression $2 \sec^2 A \sec^4 A 2 \csc^2 A + \csc^4 A$, giving the result in terms of $\tan A$. 13. If $$\tan \theta = \frac{\sin a - \cos a}{\sin a + \cos a}$$, prove that $\sqrt{2} \sin \theta = \sin a - \cos a$. 14. Shew that the values of $$\frac{\sin 45^{\circ} - \sin 30^{\circ}}{\cos 45^{\circ} + \cos 60^{\circ}} \text{ and } \frac{\sec 45^{\circ} - \tan 45^{\circ}}{\csc 45^{\circ} + \cot 45^{\circ}}$$ are the same. - 15. Prove that the multiplier which will convert any number of centesimal seconds into English minutes is '0054. - 16. Prove the identities: (1) $$\frac{\tan A - \tan B}{\cot B - \cot A} = \frac{\tan B}{\cot A};$$ $$(2) \quad \frac{1+\tan^2\theta}{1+\cot^2\theta} = \left(\frac{1-\tan\theta}{1-\cot\theta}\right)^2.$$ 17. Solve the equations: (1) $$\sin \theta + \csc \theta = \frac{3}{\sqrt{2}};$$ (2) $\cos \theta + \sec \theta = 2\frac{1}{2}.$ - 18. A man running on a circular track at the rate of 10 miles an hour traverses an arc which subtends 56° at the centre in 36 seconds. Find the diameter of the circle. Take $\pi = \frac{22}{7}$. - 19. If AD is drawn perpendicular to BC, the base of an equilateral triangle, and BC=2m, find AD. Thence, from the figure, shew that $$\cos^2 60^\circ + \cot^2 30^\circ = \frac{13}{4}$$. - 20. Prove the identities: - (1) $(\sin^2 A + \cos^2 A)(\tan^2 A 1) = (\tan^2 A + 1)(\sin^2 A \cos^2 A)$. - (2) $\sin^2 a \cos^2 \beta \cos^2 a \sin^2 \beta = \sin^2 a \sin^2 \beta (\csc^2 \beta \csc^2 a)$. - **21.** In a triangle, right-angled at C, find c and b, given that a+c=281, $\cos B=405$. - 22. On a globe of 6 miles diameter an arc of 2 fur. 55 yds. is measured; find the radian measure of the angle subtended at the centre of the globe. If this was taken as the unit of measurement, how would a right angle be represented? 23. Shew that (1) $$\sin \theta \cos \theta \left\{ \sin \left(\frac{\pi}{2} - \theta \right) \csc \theta + \cos \left(\frac{\pi}{2} - \theta \right) \sec \theta \right\} = 1;$$ (2) $$\frac{\tan\left(\frac{\pi}{2} - \theta\right)}{\sec \theta} \cdot \frac{\cot^2 \theta}{\sec\left(\frac{\pi}{2} - \theta\right)} \cdot \frac{\sin\left(\frac{\pi}{2} - \theta\right)}{\sin^3 \theta} = \cot^5 \theta.$$ - 24. From a station two lighthouses A, B, are seen in directions N, and N.E. respectively; but if A were half as far off as it really is, it would appear due W. from B. Compare the distances of A and B from the station. - 25. Find the numerical value of $$3 \tan^2 45^\circ - \sin^2 60^\circ - \frac{1}{2} \cot^2 30^\circ + \frac{1}{8} \sec^2 45^\circ$$; and find x from the equation $$\csc(90^{\circ} - A) - x \cos A \cot(90^{\circ} - A) = \sin(90^{\circ} - A).$$ 26. Prove the identities: (1) $$(\sin A - \csc A)^2 + (\cos A - \sec A)^2 = \cot^2 A + \tan^2 A - 1$$; (2) $$(\cot \theta - 3) (3 \cot \theta - 1) = (3 \csc^2 \theta - 10 \cot \theta)$$. 27. If cot $$A = 4.5$$, find the value of $$\frac{2 \sin A - \cos A}{2 \sin A + 3 \cos A}$$ 28. Find two values of θ which satisfy $$2\cos\theta\cot\theta+1=\cot\theta+2\cos\theta$$. - 29. If an arc subtends 20° 17′ at the centre of a circle whose radius is 6 inches, find in sexagesimal measure the angle it will subtend in a circle whose radius is 8 inches. - **30.** Looking due South from the top of a cliff the angles of depression of a rock and a life-buoy are found to be 45° and 60°. If these objects are known to be 110 yards apart, find the height of the cliff. - 31. Prove that $$\frac{1 + \cos A}{1 - \cos A} - \frac{\sec A - 1}{1 + \sec A} - 4 \cot^2 A = \frac{4}{1 + \sec A}.$$ 32. Solve the equations: (1) $$8\sin^2\theta - 2\cos\theta = 5$$; (2) $5\tan^2 x - \sec^2 x = 11$. - 33. What is the difference in latitude of two places on the same meridian whose distance apart is 11 inches on a globe whose radius is 5 feet? Take $\pi = \frac{22}{7}$. - 34. Given that $\sec A = \frac{25}{7}$, find all the other Trigonometrical ratios of A. - 35. Which of the following statements are possible, and which impossible? (1) $$4\sin^2\theta = 5$$; (2) $(a^2 + b^2)\cos\theta = 2ab$; (3) $$(m^2 + n^2)$$ cosec $\theta = m^2 - n^2$; (4) sec $\theta = 2.375$. **36.** Walking down a hill inclined to the horizon at an angle θ a man observes an object in the horizontal plane whose angle of depression is a. Half way down the hill the angle of depression is β . Prove that $\cot \theta = 2 \cot a - \cot \beta$. # II. (After Chapter XII.) - 37. In a triangle $a=25\sqrt{2}$, c=50, $C=90^{\circ}$: find B, b and the perpendicular from C on c. - 38. Prove that $$\begin{array}{l} (2 \sec A + 3 \sin A) \, (3 \csc A - 2 \cos A) \\ = (2 \csc A + 3 \cos A) \, (3 \sec A - 2 \sin A). \end{array}$$ - 39.
Find the values of $\sin 960^\circ$, $\csc (-510^\circ)$, $\tan 570^\circ$. - **40.** Find all the angles between 0° and 500° which satisfy the equation $\tan^2 \theta = 1$. - 41. The angle of elevation of the top of a steeple is 58° from a point in the same level as its base, and is 44° from a point 42 feet directly above the former point. Given that $\tan 58^{\circ}=1^{\circ}6$ and $\tan 44^{\circ}=965$, shew that the height of the steeple is 105 ft. approximately. - 42. From the formula $\tan A = \frac{\sin 2A}{1 + \cos 2A}$ find $\tan 15^{\circ}$ and $\tan 75^{\circ}$, and solve the equation $\sec^2 \theta = 4 \tan \theta$. - 43. Shew that $$(1 + \sec \theta + \tan \theta) (1 + \csc \theta + \cot \theta)$$ $$= 2 (1 + \tan \theta + \cot \theta + \sec \theta + \csc \theta).$$ 44. In a triangle ABC right-angled at C shew that $$\frac{\sin^2 A}{\sin^2 B} - \frac{\cos^2 A}{\cos^2 B} = \frac{a^4 - b^4}{a^2 b^2}.$$ 45. Find all the angles less than four right angles which satisfy the equation $$2\cos^2\theta = 1 + \sin\theta$$. - 46. Determine the value of $\sin(270^{\circ} + A)$ when $\sin A = 6$. - 47. Given $\sin a = \frac{5}{13}$, $\sin \beta = \frac{4}{5}$, find the value of $\cos (a+\beta)$, and deduce $\sin (45^{\circ} + a + \beta) = \frac{79\sqrt{2}}{130^{\circ}}$. - 48. Reduce $\frac{\cos A \cos 3A}{\sin 3A \sin A}$ to a single term and trace the changes of the expression in sign and magnitude as A increases from 0° to 180°. - 49. If $\cos A = -\frac{\sqrt{3}}{2}$, find $\tan A$, drawing a diagram to explain the two values. - 50. From a balloon vertically over a straight road, the angles of depression of two consecutive milestones are observed to be 45° and 60°; find the height of the balloon. - 51. Find the value of (1) $$\cot^2\frac{\pi}{6} - 2\cos^2\frac{\pi}{3} - \frac{3}{4}\sec^2\frac{\pi}{4} - 4\sin^2\frac{\pi}{6}$$; (2) $$2 \sec^2 180^\circ \sin 0^\circ - \cos 2\pi + \csc \frac{3\pi}{2}$$. 52. Prove the following identities: (1) $$\sin^4 a + 2 \sin^2 a \left(1 - \frac{1}{\csc^2 a} \right) = 1 - \cos^4 a;$$ (2) $$\frac{1 + \tan^2\left(\frac{\pi}{4} - \theta\right)}{1 - \tan^2\left(\frac{\pi}{4} - \theta\right)} = \csc 2\theta;$$ (3) $$\cos 10^{\circ} + \sin 40^{\circ} = \sqrt{3} \sin 70^{\circ}$$. 53. If $$b \tan \theta = a$$, find the value of $\frac{a \sin \theta - b \cos \theta}{a \sin \theta + b \cos \theta}$. 54. Prove that $$4\cos 18^{\circ} - 3\sec 18' = 2\tan 18^{\circ}$$, 55. Find the values of $$\tan (-240^\circ)$$, $\cos 3360^\circ$, $\cot (-840^\circ)$. Prove also that $$\sin\frac{3\pi}{2} - \cos\frac{\pi}{2} + \cos\pi = \sec\frac{2\pi}{3}.$$ - 56. A railway train is travelling on a curve of half-a-mile radius at the rate of 20 miles an hour: through what angle has it turned in 10 seconds? Take $\pi = \frac{22}{7}$. - 57. If $\sec a = \frac{13}{5}$, find the value of $$\frac{2-3\cot a}{4-9\sqrt{\sec^2 a-1}}.$$ 58. Prove (1) $2-2 \tan A \cot 2A = \sec^2 A$; (2) $$\frac{\cos\left(\frac{\pi}{4} - \theta\right) - \cos\left(\frac{\pi}{4} + \theta\right)}{\sin\left(\frac{2\pi}{3} + \theta\right) - \sin\left(\frac{2\pi}{3} - \theta\right)} + \sqrt{2} = 0.$$ 59. When $A + B + C = 180^{\circ}$, simplify (1) $$\frac{\cos A \cos C + \cos (A+B) \cos (C+B)}{\cos A \sin C - \sin (A+B) \cos (C+B)};$$ (1) $$\frac{\cos A \cos C + \cos (A+B) \cos (C+B)}{\cos A \sin C - \sin (A+B) \cos (C+B)};$$ (2) $$\frac{\cos A}{\sin B \sin C} + \frac{\cos B}{\sin C \sin A} + \frac{\cos C}{\sin A \sin B}.$$ - 60. A flagstaff 100 feet high stands vertically at the centre of a horizontal equilateral triangle: if each side of the triangle subtends an angle of 60° at the top of the flagstaff, find the side of the triangle. - 61. Prove that the product of $$\sin \theta (1 + \sin \theta) + \cos \theta (1 + \cos \theta)$$ $$\sin \theta (1 - \sin \theta) + \cos \theta (1 - \cos \theta)$$ and is equal to $\sin 2\theta$. 62. Shew that $$(1-\sin\theta)(1-\sin\phi) = \left\{\sin\frac{\theta+\phi}{2} - \cos\frac{\theta-\phi}{2}\right\}^2.$$ 63. Prove that the value of $$\frac{\sin(a+\theta) - \sin(a-\theta)}{\cos(\beta-\theta) - \cos(\beta+\theta)}$$ is the same for all values of θ . **64.** If $A + B + C = 180^{\circ}$, prove that $$\cos\frac{A}{2}\cos\frac{B-C}{2} + \cos\frac{B}{2}\cos\frac{C-A}{2} + \cos\frac{C}{2}\cos\frac{A-B}{2}$$ $$= \sin A + \sin B + \sin C.$$ **65.** If $\tan \frac{\theta}{2} = \csc \theta - \sin \theta$, shew that $$\cos^2\frac{\theta}{2} = \cos 36^\circ$$ or $\cos 108^\circ$. - 66. A man stands at a point X on the bank XY of a river with straight and parallel sides, and observes that the line joining X to a point Z on the opposite bank makes with XY an angle of 30°. He then goes 200 yards along the bank to Y and finds that YZ makes with YX an angle of 60°. Find the breadth of the river. - 67. It is found that the driving wheel of a bicycle, 32 inches in diameter, makes very nearly 1000 revolutions in travelling 2792½ yards. Use this observation to calculate (to three places of decimals) the ratio of the circumference of a circle to its diameter. - 68. If $a+\beta+\gamma=\frac{\pi}{2}$, prove that $\sin^2 a + \sin^2 \beta + \sin^2 \gamma + 2\sin a \sin \beta \sin \gamma = 1.$ - 69. Prove that - (1) $(\tan A + \tan 2A)(\cos A + \cos 3A) = 2\sin 3A$; - (2) $\sin^2 A \cos^4 A = \frac{1}{16} + \frac{1}{32} \cos 2A \frac{1}{16} \cos 4A \frac{1}{32} \cos 6A$. 70. If $$a = \frac{\pi}{19}$$, find the value of $\frac{\sin 23a - \sin 3a}{\sin 16a + \sin 4a}$. 71. If $A + B = 225^{\circ}$, prove that $$\frac{\cot A}{1 + \cot A} \cdot \frac{\cot B}{1 + \cot B} = \frac{1}{2}.$$ - 72. Prove that $\cot \theta \tan \theta = 2 \cot 2\theta$; and hence shew that $\tan \theta + 2 \tan 2\theta + 4 \tan 4\theta = \cot \theta 8 \cot 8\theta$. - 73. Simplify $1 \frac{\sin^2 \theta}{1 + \cot \theta} \frac{\cos^2 \theta}{1 + \tan \theta}$. - **74.** Eliminate A between the equations $x=3 \sin A \sin 3A$, $y=\cos 3A+3\cos A$. - 75. Two flagstaffs stand on a horizontal plane. A, B are two points on the line joining the bases of the flagstaffs and between them. The angles of elevation of the tops of the flagstaffs as seen from A are 30° and 60°, and as seen from B, 60° and 45°. If the length of AB is 30 ft., find the heights of the flagstaffs and the distance between them. - 76. Prove the identities: - (1) $\cos^2 A + \cos^2 B 2\cos A \cos B \cos (A + B) = \sin^2 (A + B)$; - (2) $2\sin 5A \sin 3A 3\sin A = 4\sin A\cos^2 A(1 8\sin^2 A)$. - 77. A square is inscribed in a circle the circumference of which is 3 feet. Find the number of inches in the length of a side, correct to two places of decimals. Given $$\frac{1}{\pi}$$ = 3183, $\sqrt{2}$ = 1.4142. 78. Points A, B, C, D are taken on the circumference of a circle so that the arcs AB, BC, and CD subtend respectively at the centre angles of 108° , 60° , and 36° . Shew that $$AB = BC + CD$$. - 79. Prove that $\cot 15^{\circ} + \cot 75^{\circ} + \cot 135^{\circ} \csc 30^{\circ} = 1$. - 80. From the equations $$\cot \theta (1 + \sin \theta) = 4m,$$ $$\cot \theta (1 - \sin \theta) = 4n,$$ derive the relation $(m^2 - n^2)^2 = mn$. - 81. Prove the identities: - (1) $\sin(a+\beta)\cos\beta \sin(\gamma+a)\cos\gamma = \sin(\beta-\gamma)\cos(a+\beta+\gamma);$ - (2) $(\tan 2A \tan A)(\sec A + \sec 3A) = 2\sin A \sec A \sec 3A$. - 82. Prove that $\cos 6^{\circ} \cos 66^{\circ} \cos 42^{\circ} \cos 78^{\circ} = \frac{1}{16}$. - 83. From the formula $\cot A = \frac{1 + \cos 2A}{\sin 2A}$, prove that $\cot 22^{\circ} 30' = \sqrt{2 + 1}$. - 84. An observer on board a ship sailing due North at the rate of ten miles an hour, sees a lighthouse in the East, and an hour later notices that the same lighthouse bears S.S.E.; find in miles, to two places of decimals, the distance of the ship from the lighthouse at the first observation. # III. (After Chapter XVI.) - 85. Prove that - (1) $\sin A \sin (B-C) + \sin B \sin (C-A) + \sin C \sin (A-B) = 0$; - (2) $\tan \theta = \frac{\sin \theta + \sin 2\theta}{1 + \cos \theta + \cos 2\theta}$. - 86. If $a+\beta+\gamma=0$, prove that $\cos a + \cos \beta + \cos \gamma = 4 \cos \frac{a}{2} \cos \frac{\beta}{2} \cos \frac{\gamma}{2} 1.$ - 87. In any triangle prove that $\frac{b^2 c^2}{a} \cos A + \frac{c^2 a^2}{b} \cos B + \frac{a^2 b^2}{c} \cos C = 0.$ 88. If $$\frac{\cos \theta}{a} = \frac{\sin \theta}{b},$$ prove that $$\frac{a}{\sec 2\theta} + \frac{b}{\csc 2\theta} = a.$$ 89. Prove that $\log_a b \log_b c \log_c a = 1$. Given $\log_{10} 3 = 47712$, $\log_{10} 8 = 90309$, find the values of $\log_{10} 2.4$, $\log_{10} 5400$, $L \tan 30$. 90. If $$A+B+C=90^{\circ}$$, prove that $\cot A + \cot B + \cot C = \cot A \cot B \cot C$; and if A, B, C are in Arithmetical Progression, shew that this equation gives the value of $\cot 15^{\circ}$. 91. Shew that $$(1+\sin 2A + \cos 2A)^2 = 4\cos^2 A (1+\sin 2A)$$. **92.** In a triangle where a, b, A are given, shew that c is one of the roots of the equation $$x^2 - 2bx \cos A + b^2 - a^2 = 0$$. 93. Prove that $$\frac{\sin 9^{\circ}}{\sin 48^{\circ}} = \frac{\sin 12^{\circ}}{\sin 81^{\circ}}.$$ **94.** If $$A + B + C = 180^{\circ}$$, prove that $$\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2}$$ $$=4\cos\left(45^{\circ} - \frac{A}{4}\right)\cos\left(45^{\circ} - \frac{B}{4}\right)\cos\left(45^{\circ} - \frac{C}{4}\right).$$ 95. Given $$L \sin 27^{\circ} 45' = 9.6680265$$, $L \sin 27^{\circ} 46' = 9.6682665$, $L \sin \theta = 9.6682007$, find θ . 96. Prove that if A, B, C are three angles such that the sum of their cosines is zero, the product of their cosines is one-twelfth of the sum of the cosines of 3A, 3B, 3C. - 97. If A be between 270° and 360°, and $\sin A = -\frac{7}{25}$, find the values of $\sin 2A$ and $\tan \frac{A}{2}$. - 98. Solve the equation $$2\cot\frac{\theta}{2} = (1 + \cot\theta)^2.$$ Hence find the value of tan 15°. - **99.** Given $\log_{10} 2 = 3010300$, $\log_{10} 360 =
2.5563025$, find the logarithms of .04, .24, .6, and shew that $\log_2 30 = 4.90689$. - 100. Prove that $\cos(x-y-z)+\cos(y-z-x)+\cos(z-x-y)-4\cos x\cos y\cos z$ vanishes when x+y+z is an odd multiple of a right angle. 101. If $$\cot a = (x^3 + x^2 + x)^{\frac{1}{2}}$$, $\cot \beta = (x + x^{-1} + 1)^{\frac{1}{2}}$, $\tan \gamma = (x^{-3} + x^{-2} + x^{-1})^{\frac{1}{2}}$, shew that $a+\beta=\gamma$. 102. Shew how to solve a right-angled triangle of which one acute angle and the opposite side are given. Apply this to the triangle in which the side is 28 and the angle $31^5 53' 26.8''$, given $\log 2.8 = 4471580$, $\log 4.5 = 6532127$, $$L \cot 31^{\circ} 53' = 10.2061805$$, diff. for $1' = 2816$. 103. If $$\tan A = \frac{\sqrt{3}}{4 - \sqrt{3}}$$ and $\tan B = \frac{\sqrt{3}}{4 + \sqrt{3}}$, prove that $\tan (A - B) = 375$. - 104. The sides of a triangle are x, y, and $\sqrt{x^2 + xy + y^2}$, find its greatest angle. - 105. Prove that $\cos A \sin A$ is a factor of $\cos 3A + \sin 3A$; and that $$\cos^2 A + \cos^2 \left(A + \frac{2\pi}{3} \right) + \cos^2 \left(A - \frac{2\pi}{3} \right) = \frac{3}{2}.$$ 106. In any triangle, if $\tan \frac{A}{2} = \frac{5}{6}$, and $\tan \frac{B}{2} = \frac{20}{37}$, find $\tan C$. Shew also that, in such a triangle, a+c=2b. 107. Simplify $$\left\{\cot\theta + \cot\left(\theta - \frac{\pi}{2}\right)\right\} \left\{\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{\pi}{4} + \theta\right)\right\}.$$ 108. If a=40, b=51, c=43, find the value of A, given $\log 1.28 = 107210$, $\log 6.03 = 780317$, $L \tan 24^{\circ} 44' 16'' = 9.6634465$. 109. If $$\tan B = \frac{n \sin A \cos A}{1 - n \sin^2 A},$$ prove that $$\tan (A - B) = (1 - n) \tan A.$$ - 110. Given $\log 5 = 69897$, find $\log 200$, $\log 025$, $\log \sqrt[6]{62.5}$, and also $L \sin 30^{\circ}$ and $L \cos 45^{\circ}$. - 111. Prove the identities: - (1) $(\sec 2A 2) \cot (A 30^\circ) = (\sec 2A + 2) \tan (A + 30^\circ);$ - (2) $1 + \cos 2a \cos 2\beta = 2 (\cos^2 a \cos^2 \beta + \sin^2 a \sin^2 \beta)$. - 112. In a triangle, $B=60^{\circ}$, $C=30^{\circ}$, BC=132 yards. BC is produced to D and the angle $ADB=15^{\circ}$; find CD and the perpendicular from A on BC, given that $\sqrt{3}=1\frac{8}{11}$ approximately. - 113. In any triangle prove that $$(a+b+c)\tan\frac{C}{2} = a\cot\frac{A}{2} + b\cot\frac{B}{2} - c\cot\frac{C}{2}.$$ 114. If the sides of a triangle are 68 ft., 75 ft., 77 ft. respectively, find the least angle of the triangle, given $\log 2 = 30103$, $L \cos 26^{\circ} 34' = 9.9515389$, diff. for 1' = 632. - 115. If $\sin A = 6$ and A lies between 90° and 180°, find the values of $\sin (A 90^\circ)$, $\csc (270^\circ A)$. - 116. Prove that $$\log_a d = \log_a b \times \log_b c \times \log_c d.$$ Given $\log_{10} 5 = .69897$, find $\log_{10} 8$, $\log_8 10$, $\log_{10} (.032)^5$. 117. Prove that $$\cos(420^{\circ} + A) + \cos(60^{\circ} - A) = \cos A.$$ Deduce the value of cos 105° + cos 15°. 118. Find the values of $\tan \frac{x}{2}$ from the equation $\cos x - \sin a \cot \beta \sin x = \cos a$. 119. If $\sin A : \sin (2A + B) = n : m$, prove that $$\cot (A+B) = \frac{m-n}{m+n} \cot A$$. - 120. A tower AB stands on a horizontal plane, and AC, AD are the shadows at noon and $6 \, \text{P.M.}$ If AD is 17 ft. longer than AC, and BC is 53 ft., find the height of the tower and the altitude of the sun at noon, when the altitude at $6 \, \text{P.M.}$ is 45° ; given $\tan 31^{\circ} 48' = 62$. - 121. Prove that - (1) $\sin 8\theta + \sin 2\theta = 4\sin \frac{5\theta}{2}\cos \frac{5\theta}{2}\cos 3\theta$; - (2) $\sin 18^{\circ} + \cos 18^{\circ} = \sqrt{2} \cos 27^{\circ}$. - 122. Given $\log 36 = 1.556302$, $\log 48 = 1.681241$, find $\log 40$ and $\log \sqrt{\frac{2}{15}}$. - 123. Given b=9.5, c=.5, $A=144^{\circ}$, find the remaining angles; given $\log 3=.4771213$, $L \cot 72^{\circ}=9.5117760$, $L \tan 16^{\circ} 19' = 9.4664765$, $L \tan 16^{\circ} 18' = 9.4660078$. - 124. In any triangle prove that - (1) $bc\sin^2 A = a^2(\cos A + \cos B \cos C)$; - (2) $bc \cos A + ca \cos B + 2ab \cos C = a^2 + b^2$. - 125. If $\tan \frac{\beta}{2} = 4 \tan \frac{a}{2}$, prove that $$\tan\frac{\beta - a}{2} = \frac{3\sin a}{5 - 3\cos a}.$$ 126. Shew that $$\sin (36^{\circ} + A) - \sin (36^{\circ} - A) + \sin (72^{\circ} - A) - \sin (72^{\circ} + A) = \sin A.$$ 127. If $\sin \theta = -\frac{2}{3}$, find $\tan \theta$, and explain by means of a figure why there are two values. 128. Prove that (1) $$\sin 2A + \cos 2B = 2\sin\left(\frac{\pi}{4} + A - B\right)\cos\left(\frac{\pi}{4} - A - B\right);$$ (2) $$(\sin \theta - \sin \phi)(\cos \phi + \cos \theta) = 2\sin(\theta - \phi)\cos^2\frac{\theta + \phi}{2}$$. 129. In any triangle, if $(\sin A + \sin B + \sin C) (\sin A + \sin B - \sin C) = 3 \sin A \sin B$, prove that $C = 60^{\circ}$. - 130. Prove that $\log_a b \times \log_c d = \log_a d \times \log_c b$. - 131. If $\log 2001 = 3.3012471$, $\log 2 = 30103$, find $\log 20.0075$. - 132. If a=7, b=8, c=9, shew that the length of line joining B to the middle point of AC is 7. - 133. If $\tan A + \sec A = 2$, prove that $\sin A = \frac{3}{5}$ when A is less than 90°. - 134. Prove that $$\frac{3 - 4\cos 2A + \cos 4A}{3 + 4\cos 2A + \cos 4A} = \tan^4 A.$$ 135. Shew that $$\frac{\sin 3A + \cos 3A}{\sin 3A - \cos 3A} = \frac{1 + 2\sin 2A}{1 - 2\sin 2A} \tan (A - 45^{\circ}).$$ 136. If $$\frac{x}{y} = \frac{\cos A}{\cos B},$$ prove that $x \tan A + y \tan B = (x+y) \tan \frac{A+B}{2}$. 137. Given $\log 3.5 = 544068$, $\log 3.25 = 511883$, $\log 2.45 = 389166$, find $\log 5$, $\log 7$, and $\log 13$. 138. In a triangle, $a=384,\ b=330,\ C=90^\circ;$ find the other angles; given $$\begin{split} \log 11 &= 1.0413927, \quad L \tan 49^{\circ} \ 19' = 10.0656886 \,; \\ \log 20 &= 1.3010300, \quad L \tan 49^{\circ} \ 20' = 10.0659441. \end{split}$$ 139. If $\cos \theta = \cos a \cos \beta$, prove that $$\tan \frac{\theta + a}{2} \tan \frac{\theta - a}{2} = \tan^2 \frac{\beta}{2}$$. 140. Prove that $$\frac{\sin \theta}{\cos \theta + \sin \phi} + \frac{\sin \phi}{\cos \phi - \sin \theta} = \frac{\sin \theta}{\cos \theta - \sin \phi} + \frac{\sin \phi}{\cos \phi + \sin \theta}$$ - 141. If in a triangle $c(a+b)\cos\frac{B}{2} = b(a+c)\cos\frac{C}{2}$, prove that b=c. - 142. Prove the identities: - (1) $\frac{\cot A + \operatorname{cosec} A}{\tan A + \operatorname{sec} A} = \cot \left(\frac{\pi}{4} + \frac{A}{2}\right) \cot \frac{A}{2};$ - (2) $\sin^3 A + \sin^3 (120^\circ + A) + \sin^3 (240^\circ + A) = -\frac{3}{4} \sin 3A$. - 143. Calculate the value of $\sqrt[5]{18 \times 0015}$, having given $\log 3 = 4771213$, $\log 48559 = 46862697$, $\log 48560 = 46862787$. 144. Find the other angles of a triangle when one angle is 112° 4', the side opposite to it 573 yards long, and another side 394 yards long; given > $\log 573 = 2.7581546$, $\log 394 = 2.5954962$, $L\cos 22^{\circ}4' = 9.9669614$, $L\sin 39^{\circ}35' = 9.8042757$, $L \sin 39^{\circ} 36' = 9.8044284.$ #### IV. (After Chapter XVIII.) 145. In any triangle prove $$\frac{\cos A}{c\cos B + b\cos C} + \frac{\cos B}{a\cos C + c\cos A} + \frac{\cos C}{b\cos A + a\cos B}$$ $$= \frac{a^2 + b^2 + c^2}{2abc}.$$ - 146. Given log 7 = :8450980, and log 17 = 1:2304489, find $\log 119$, $\log \frac{17}{7}$, and $\log \frac{289}{343}$. - 147. If A, B, C are the angles of a triangle, and if $\cos \theta (\sin B + \sin C) = \sin A$, $\tan^2 \frac{\theta}{\theta} = \tan \frac{B}{2} \tan \frac{C}{\theta}$. prove that - 148. Prove that the diameter of a circle is a mean proportional between the lengths of the sides of the equilateral triangle and the regular hexagon that circumscribe it. - 149. Given that the sides a and b of a triangle are respectively 50 $\sqrt{5}$ feet and 150 ft., and that the angle opposite the side α is 45°, find (without logarithms) the two values of c. Also having given $\log 3 = 4771213$, $L \sin 71^{\circ} 33' = 9.9770832$, $L \sin 71^{\circ} 34' = 9.9771253$ find the two values of the angle B. 150. Prove that $2\cos 2x \csc 3x = \csc x - \csc 3x$. Thence find the sum to n terms of the series $\cos 2x \csc 3x + \cos (2 \cdot 3x) \csc 3^2x + \cos (2 \cdot 3^2x) \csc 3^3x + \dots$ 151. Prove the identities: - (1) $\cos^2 A + \sin^2 A \cos 2B = \cos^2 B + \sin^2 B \cos 2A$; - (2) $\sin 33^{\circ} + \cos 63^{\circ} = \cos 3^{\circ}$. - 152. Find all the positive angles less than two right angles which satisfy the equation $$\tan^4 A - 4 \tan^2 A + 3 = 0.$$ 153. Prove that $$\cot\frac{\theta}{2} - 3\cot\frac{3\theta}{2} = \frac{4\sin\theta}{1 + 2\cos\theta}.$$ 154. The tangents of two angles of a triangle are $\frac{3}{4}$, and $\frac{5}{12}$ respectively. Find the tangent of the third angle, and the cosine of each angle of the triangle. Also find the third angle to the nearest second, having given $$\log 33 = 1.5185139$$, $\log 56 = 1.7481880$, $L \tan 59^{\circ} 29' = 10.2295627$, Diff. for $1' = 2888$. 155. If in a triangle $$(a^2+b^2)\sin(A-B) = (a^2-b^2)\sin(A+B)$$, shew that the triangle is either isosceles or right-angled. 156. If r and R are the radii of the in-circle and circumcircle of a triangle, prove that $$8rR\left\{\cos^2\frac{A}{2} + \cos^2\frac{B}{2} + \cos^2\frac{C}{2}\right\} = 2bc + 2ca + 2ab - a^2 - b^2 - c^2.$$ 157. In any triangle prove that $$\cot B + \frac{\cos C}{\sin B \cos A} = \cot C + \frac{\cos B}{\sin C \cos A}.$$ - 158. Given $\log 6 = .778151$, $\log 4.4 = .643453$, $\log 1.8 = .255273$, find $\log 2$, $\log 3$, $\log 11$. - 159. Prove the identities: - (1) $\sin 3A = \sin A (2\cos 2A 1) \tan (60^{\circ} + A) \tan (60^{\circ} A);$ - (2) $(\sin 2A \sin 2B) \tan (A + B) = 2 (\sin^2 A \sin^2 B)$. 160. Find the greatest angle of a triangle whose sides are 183, 195, and 214 feet respectively; given $\begin{array}{ll} \log 82 = 1 \cdot 9138139, & \log 296 = 2 \cdot 4712917, \\ \log 101 = 2 \cdot 0043214, & L \tan 34^{\circ}
26' = 9 \cdot 8360513, \\ \log 113 = 2 \cdot 0530784, & L \tan 34^{\circ} 27' = 9 \cdot 8363221. \end{array}$ - 161. A circle and a regular octagon have the same perimeter; compare their areas, given $\sqrt{2}=1.414$, $\pi=3.1416$. - 162. If the sides of a triangle be in arithmetical progression, and if a be the least side, then $$\cos A = \frac{4c - 3b}{2c}.$$ **163.** If $a \sin(\theta + a) = b \sin(\theta + \beta)$, prove that $$\cot \theta = \frac{a \cos a - b \cos \beta}{b \sin \beta - a \sin \alpha}.$$ - 164. In the ambiguous case shew that the circum-circles of the two triangles are equal. - 165. From a point A on a level plain the angle of elevation of a kite is a, and its direction South; and from a place B, which is c yards South of A on the plain, the kite is seen due North at an angle of elevation β . Find the distance of the kite from A and its height above the ground. - 166. If $a+\beta+\gamma=2\pi$, express $\cos a+\cos \beta+\cos \gamma+1$ in the form of a product. - 167. Prove that $\cos 10A + \cos 8A + 3\cos 4A + 3\cos 2A = 8\cos A\cos^3 3A$. 168. In any triangle shew that $$R\!=\!\!\frac{\left(r_{2}\!+\!r_{3}\right)\left(r_{3}\!+\!r_{1}\right)\left(r_{1}\!+\!r_{2}\right)}{4\left(r_{2}r_{3}\!+\!r_{3}r_{1}\!+\!r_{1}r_{2}\right)}\,.$$ 169. If $\tan^2 \theta = 2 \tan^2 \phi + 1$, then $\cos 2\theta + \sin^2 \phi = 0$. 170. Prove that $\tan A \tan (60' + A) \tan (120' + A) = -\tan 3A.$ - 171. If in a triangle A = 2B, then $a^2 = b(c+b)$. - 172. Shew that the length of a side of an equilateral triangle inscribed in a circle is to that of a square inscribed in the same circle as $\sqrt{3}$: $\sqrt{2}$. 173. In any triangle prove that $$\tan\left(\frac{A}{2} + B\right) = \frac{c+b}{c-b}\tan\frac{A}{2}$$. If 3c = 7b, and $A = 6^{\circ} 37' 24''$, find the other angles; given $L \tan 3^{\circ} 18' 42'' = 8.7624069$, $L \tan 8^{\circ} 13' 50'' = 9.1603083$, $\log 2 = .30103$, diff. for 10'' = 1486. 174. If D be the middle point of the side BC of a triangle ABC, and if Δ be the area of the triangle, prove that $$\cot ADB = \frac{AC^2 - AB^2}{4\Delta}.$$ - 175. Prove that $\tan 20^\circ \tan 40^\circ \tan 80^\circ = \tan 60^\circ$. - 176. If, in a triangle, $b=\sqrt{3}+1$, c=2, and $A=30^{\circ}$, find B, C, and a. - 177. Prove that the rectangle contained by the diameters of the circumscribed and inscribed circles of a triangle is equal to $$\frac{2abc}{a+b+c}.$$ 178. Solve the triangle when a=7, $b=8\sqrt{3}$, $A=30^{\circ}$; given $\log 2=30103$, $L\sin 81^{\circ} 47'=9.9955188$, $\log 3=4771213$, diff. for 1'=183. $\log 7=8450980$, 179. If $$\sin 2\beta = \frac{\sin 2\alpha + \sin 2\alpha'}{1 + \sin 2\alpha \sin 2\alpha'},$$ prove that $$\tan\left(\frac{\pi}{4} + \beta\right) = \pm \tan\left(\frac{\pi}{4} + a\right) \tan\left(\frac{\pi}{4} + a'\right)$$. 180. On a plain at some distance from its base, a mountain is found to have an elevation of 28°. At a station lying 3 miles 77 yards further away from the mountain the angle is reduced to 16°. Find the height of the mountain in feet. $$log 1.6071 = .2060$$, $L sin 16^{\circ} = 9.4403$, $L sin 28^{\circ} = 9.6716$, $L sin 12^{\circ} = 9.3179$. - 181. Prove that - $\tan \frac{A+B}{2} \tan \frac{A-B}{2} = \frac{2\sin B}{\cos A + \cos R};$ - (2) $4\cos^8 A 4\sin^8 A = 4\cos 2A \sin 2A\sin 4A$. - 182. If $A+B+C=\frac{\pi}{2}$, and $\cos A + \cos C = 2\cos B$, show that $1 + \tan \frac{A}{2} \tan \frac{C}{2} = 2 \left(\tan \frac{A}{2} + \tan \frac{C}{2} \right),$ or else A + C is an odd multiple of π . 183. Shew that in any triangle $$\cos A + \cos B - \sin C = 4\sin\frac{C}{2}\sin\left(45^\circ - \frac{A}{2}\right)\sin\left(45^\circ - \frac{B}{2}\right).$$ - With the usual notation in any triangle, prove that $\frac{bc}{r_1} + \frac{ca}{r_2} + \frac{ab}{r_3} = 2R \left\{ \frac{b}{a} + \frac{c}{a} + \frac{c}{b} + \frac{a}{b} + \frac{a}{c} + \frac{b}{c} - 3 \right\}.$ - 185. The bisector of the angle A meets the side BC in Dand the circumscribed circle in E_{\bullet} shew that $$DE = \frac{a^2 \sec \frac{A}{2}}{2(b+c)}.$$ - 186. If a=4090, b=3850, c=3811, find A, given $\log 5.8755 = .7690448$ $\log 3.85 = .5854607$. $\log 3.811 = .5810389,$ $\log 1.7855 = .2517599$, $L\cos 32^{\circ} 15' = 9.9272306$, $L\cos 32^{\circ} 16' = 9.9271509$. - 187. Prove that - (1) $\csc^6 \theta \cot^6 \theta = 1 + 3 \csc^2 \theta \cot^2 \theta$: - (2) $\cos (15^{\circ} a) \sec 15^{\circ} \sin (15^{\circ} a) \csc 15^{\circ} = 4 \sin a$ 188. Prove that $$\frac{\sin{(A+B+C')}}{\cos{A}\cos{B}\cos{C}} = \tan{A} + \tan{B} + \tan{C} - \tan{A} \tan{B} \tan{C}.$$ 189. If $$\log \frac{1025}{1024} = p$$, and $\log 2 = q$, prove that $\log 4100 = p + 12q$. 190. In any triangle prove that (1) $$(a^2-b^2-c^2)\tan A + (a^2-b^2+c^2)\tan B = 0$$; $$(2) \quad \frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} = \frac{1}{a^2} - \frac{1}{b^2}.$$ - 191. Find the area of the triangle, whose sides are 68 ft., 75 ft., 77 ft., respectively; and also find the radii of the three escribed circles. - 192. If the bisector of the angle A of the triangle ABC meet the opposite side in D, prove that $$AD = \frac{2bc}{b+c}\cos\frac{A}{2}$$. ### V. (After Chapter XIX.) - 193. Solve the equations: - (1) $\sin 5\theta \sin 3\theta = \sin \theta \sec 45^\circ$; (2) $$\cot \theta + \cot \left(\frac{\pi}{4} + \theta\right) = 2.$$ 194. If $2 \sec 2a = \tan \beta + \cot \beta$, shew that one value of $a + \beta$ is $\frac{\pi}{4}$. 195. If $$\cos^2 \beta \tan (a+\theta) = \sin^2 \beta \cot (a-\theta)$$, then $\tan^2 \theta = \tan (a+\beta) \tan (a-\beta)$. 196. If p_1 , p_2 , p_3 are the perpendiculars from the angular points on the sides of a triangle, prove that (1) $$8R^3 = \frac{a^2b^2c^2}{p_1p_2p_3};$$ (2) $\frac{1}{p_3^2} = \frac{1}{p_1^2} + \frac{1}{p_2^2} - \frac{2}{p_1p_2}\cos C.$ 197. Find the perimeter of a regular quindecagon circumscribed about a circle whose area is 1386 sq. ft.; given $$\tan 12^{\circ} = .213$$. 198. The top of a pole, placed against a wall at an angle a with the horizon, just touches the coping, and when its foot is moved a feet further from the wall, and its angle of inclination is β , it rests on the sill of a window: prove that the perpendicular distance from the coping to the sill $= a \cot \frac{a+\beta}{2}$. 199. In any triangle prove that $$\frac{ab - r_1 r_2}{r_3} = \frac{bc - r_2 r_3}{r_1} = \frac{ca - r_3 r_1}{r_2}.$$ 200. Prove that (1) $$\cos^{-1}\frac{41}{49} = 2\sin^{-1}\frac{2}{7}$$; (2) $3\tan^{-1}\frac{1}{4} = \tan^{-1}\frac{47}{52}$. 201. Prove the identities: (1) $$(\tan A + \sec A) \cot \frac{A}{2} = (\cot A + \csc A) \tan \left(45^{\circ} + \frac{A}{2}\right);$$ (2) $$\cos 2A + \cos 2B - 4\sin(45^{\circ} - A)\sin(45^{\circ} - B)\cos(A + B) = \sin 2(A + B).$$ 202. Given $$\log 3 = 4771213$$, $\log 7 = 8450980$, $L \sin 25\frac{5}{2} = 9.6373733$; show that the perimeter of a regular figure of seven sides is greater than 3 times the diameter of the circle circumscribing the figure. **203.** If $\tan \phi = \frac{a-b}{a+b} \cot \frac{C}{2}$, in any triangle, prove that $$c = (a+b) \frac{\sin \frac{C}{2}}{\cos \phi}.$$ 204. The sides of a triangle are 237 and 158, and the contained angle is 66° 40′; use the formulæ in the last question to find the base. $$\begin{split} \log 2 &= \cdot 30103, \quad L \cot 33^{\circ} \, 20' = 10 \cdot 18197, \\ \log 79 &= 1 \cdot 89763, \quad L \sin 33^{\circ} \, 20' = \, 9 \cdot 73998, \\ \log 22687 &= 4 \cdot 35578, \\ L \tan 16^{\circ} \, 54' &= 9 \cdot 48262, \quad L \sec 16^{\circ} \, 54' = 10 \cdot 01917, \\ L \tan 16^{\circ} \, 55' &= 9 \cdot 48308, \quad L \sec 16^{\circ} \, 55' = 10 \cdot 01921. \end{split}$$ 205. Show that $$\sec \theta = \frac{2}{\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}}$$. 206. Prove that $$\sin^{-1}\frac{3}{\sqrt{73}} + \cos^{-1}\frac{11}{\sqrt{146}} + \sin^{-1}\frac{1}{2} = \frac{5\pi}{12},$$ and solve the equation $$\tan^{-1}\frac{x-1}{x+1} + \tan^{-1}\frac{2x-1}{2x+1} = \tan^{-1}\frac{23}{36}.$$ 207. If x, y, z are the perpendiculars from the angular points of a triangle upon the opposite sides a, b, c, shew that $$\frac{bx}{c} + \frac{cy}{a} + \frac{az}{b} = \frac{a^2 + b^2 + c^2}{2R}.$$ 208. If $\sin(a-\theta) = \cos(a+\theta)$, shew that either $$\theta = m\pi - \frac{\pi}{4}$$ or $a = m\pi + \frac{\pi}{4}$, where m is zero or any integer. 209. The vertical angle of an isosceles triangle is 120° ; shew that the distance between the centres of the inscribed and circumscribed circles is to the base of the triangle in the ratio $$\sqrt{3} = 1 : \sqrt{3}$$. 210. If in a triangle 3R=4r, shew that $4(\cos A + \cos B + \cos C) = 7$. 211. If $$\frac{\sin (\theta + a)}{\cos (\theta - a)} = \frac{1 - m}{1 + m}$$, prove that $$\tan \left(\frac{\pi}{4} - \theta\right) = m \cot \left(\frac{\pi}{4} - a\right).$$ - 212. Solve the equations: - (1) $\sin 5\theta \sin 3\theta = \sqrt{2} \cos 4\theta$; - (2) $(1 \tan \theta) (1 + \sin 2\theta) = 1 + \tan \theta$. - 213. If $\cos A + \cos B = 4 \sin^2 \frac{C}{2}$ in any triangle, prove that a+b=2c. - **214.** A flagstaff standing on the top of a tower 80 feet high subtends an angle $\tan^{-1}\frac{1}{9}$ at a point 100 feet from the foot of the tower; find the height of the flagstaff. - 215. Prove that - (1) $\cot^{-1} 7 + \cot^{-1} 8 + \cot^{-1} 18 = \cot^{-1} 3$; - (2) $4 \tan^{-1} \frac{1}{5} \tan^{-1} \frac{1}{239} = \frac{\pi}{4}$. - **216.** If $2 \sin \frac{A}{2} = -\sqrt{1 + \sin A} + \sqrt{1 \sin A}$, shew that A lies between $(8n+3)\frac{\pi}{2}$ and $(8n+5)\frac{\pi}{2}$. - 217. Prove that $$\sin^2\left(\frac{\pi}{8} + \frac{\theta}{2}\right) - \sin^2\left(\frac{\pi}{8} - \frac{\theta}{2}\right) = \frac{1}{\sqrt{2}}\sin\theta.$$ 218. If $$\tan \theta = \frac{x \sin \phi}{1 - x \cos \phi}$$, $\tan \phi = \frac{y \sin \theta}{1 - y \cos \theta}$, prove that $$\frac{\sin \theta}{\sin \phi} = \frac{x}{y}.$$ 219. Solve the equation $$\tan^{-1}(x+1) + \tan^{-1}(x-1) =
\tan^{-1}\frac{8}{31};$$ and prove that $$\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3) = 15.$$ 220. Prove that in any triangle $\sin 10A + \sin 10B + \sin 10C = 4 \sin 5A \sin 5B \sin 5C;$ also that the sum of the cotangents of $\frac{5\pi+A}{2^5}$, $\frac{5\pi+B}{2^5}$, $\frac{5\pi+C}{2^5}$ is equal to their product. 221. If d_1 , d_2 , d_3 are the diameters of the three escribed circles, shew that $$d_1d_2+d_2d_3+d_3d_1=(a+b+c)^2$$. 222. To determine the breadth AB of a ravine an observer places himself at C in the straight line AB produced through B, and then walks 100 yards at right angles to this line. He then finds that AB and BC subtend angles of 15° and 25° at his eye. Find the breadth of the ravine, given $$L\cos 25^\circ = 9\cdot9572757, \quad L\cos 40^\circ = 9\cdot8842540, \\ L\cos 75^\circ = 9\cdot4129962, \\ \log 37279 = 4\cdot5714643, \quad \log 3728 = 3\cdot5714759.$$ 223. Prove that $$(1-\cos\theta) \{\sec\theta + \csc\theta (1+\sec\theta)\}^2 = 2\sec^2\theta (1+\sin\theta).$$ 224. If in a triangle $C=60^{\circ}$, prove that $$\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}.$$ 225. Prove that $$2\cos\frac{A}{2^n} = \sqrt{2 + \sqrt{2 + \sqrt{\dots \sqrt{2} + 2\cos A}}};$$ the symbol indicating the extraction of the square root being repeated n times. 226. If $$\frac{m \tan (a - \theta)}{\cos^2 \theta} = \frac{n \tan \theta}{\cos^2 (a - \theta)},$$ $$\theta = \frac{1}{2} \left\{ a - \tan^{-1} \left(\frac{n - m}{n + m} \tan a \right) \right\}.$$ then 227. The sides of a triangle are such that $$\frac{a}{1+m^2n^2} = \frac{b}{m^2+n^2} = \frac{c}{(1-m^2)(1+n^2)};$$ prove that $A=2\tan^{-1}\frac{m}{n}$, $B=2\tan^{-1}mn$, and the area of the triangle $=\frac{mnbc}{m^2+n^2}$. **228.** A flagstaff h feet high placed on the top of a tower l feet high subtends the same angle β at two points α feet apart in a horizontal line through the foot of the tower. If θ be the angle subtended by the line α at the top of the flagstaff, shew that $h = a \sin \beta \csc \theta$, and $2l = a \csc \theta (\cos \theta - \sin \beta)$. 229. Prove that $$\frac{1}{2}\tan\frac{\theta}{2} + \frac{1}{4}\tan\frac{\theta}{4} = \frac{1}{4}\cot\frac{\theta}{4} - \cot\theta.$$ - 230. A regular polygon is inscribed in a circle such that each side is $\frac{1}{m}$ th of the radius; shew that the angle at the centre subtended by each side is equal to $\sec^{-1} \frac{2m^2}{2m^2-1}$. - 231. At what distance will an inch subtend an angle of one second? - 232. If $\tan^{-1} y = 4 \tan^{-1} x$, find y as an algebraical function of x. Hence prove that tan 22° 30′ is a root of the equation $$x^4 - 6x^2 + 1 = 0$$. 233. If $\cos 2a = \frac{240}{289}$, find $\tan a$ and explain the double answer. 234. If θ , ϕ be the greatest and least angles of a triangle, the sides of which are in Arithmetical Progression, shew that $$4(1-\cos\theta)(1-\cos\phi) = \cos\theta + \cos\phi$$. 235. Solve the equations: - (1) $\sin 7\theta = \sin 4\theta \sin \theta$; - (2) $\tan x \sqrt{3} \cot x + 1 = \sqrt{3}$. 236. In any triangle prove that (1) $\sin 3A \sin (B-C) + \sin 3B \sin (C-A)$ $$+\sin 3C\sin (A-B)=0$$; (2) $$a^3 \sin(B-C) + b^3 \sin(C-A) + c^3 \sin(A-B) = 0$$. 237. ABC is a triangle and a point P is taken on AB so that AP : BP = m : n. If the angle CPB is θ , shew that $(m+n) \cot \theta = n \cot A - m \cot B$. 238. If a, β are unequal values of θ satisfying the equation $a \tan \theta + b \sec \theta = 1$, find a and b in terms of a and β , and prove that $$\sin a + \cos a + \sin \beta + \cos \beta = \frac{2b(1-a)}{1+a^2}.$$ 239. If $u_n = \sin^n \theta + \cos^n \theta$, prove that $$\frac{u_3-u_5}{u_1} = \frac{u_5-u_7}{u_2}$$. 240. A building on a square base ABCD has the sides of the base AB and CD, parallel to the banks of a river. An observer standing on the bank of the river furthest from the building in the same straight line as DA finds that the side AB subtends at his eye an angle of 45°, and after walking a yards along the bank he finds that DA subtends the angle whose sine is $\frac{1}{3}$. Prove that the length of each side of the base in yards is $\frac{a\sqrt{2}}{2}$. - 241. Prove the identities: - (1) $(\csc A \sin A)(\sec A \cos A) = (\tan A + \cot A)^{-1}$; $$(2) \quad \frac{\tan\theta}{(1+\tan^2\theta)^2} + \frac{\cot\theta}{(1+\cot^2\theta)^2} = \frac{1}{2}\sin 2\theta.$$ - **242.** If $\sin 4\theta \cos \theta = \frac{1}{4} + \sin \frac{5\theta}{2} \cos \frac{5\theta}{2}$, find one value of θ . - 243. Prove that $$\tan^{-1}\frac{2mn}{m^2-n^2} + \tan^{-1}\frac{2pq}{p^2-q^2} = \tan^{-1}\frac{2MN}{M^2-N^2},$$ where $$M=mp-nq$$, $N=np+mq$. 244. In any triangle, prove that $$\frac{\tan\frac{A}{2}}{\left(a-b\right)\left(a-c\right)} + \frac{\tan\frac{B}{2}}{\left(b-c\right)\left(b-a\right)} + \frac{\tan\frac{C}{2}}{\left(c-a\right)\left(c-b\right)} = \frac{1}{\Delta}.$$ 245. If r_1 , r_2 , r_3 be the radii of the three escribed circles, and $$\left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_1}{r_3}\right) = 2,$$ shew that the triangle must be right-angled. 246. The sides of a triangle are 237 and 158, and the contained angle is 58° 40′ 3.9″. Find by the aid of Tables the value of the base, without previously determining the other angles. **247.** If $$\tan (A+B) = 3 \tan A$$, shew that $\sin (2A+2B) + \sin 2A = 2 \sin 2B$. 248. Prove that $$4\sin(\theta - a)\sin(m\theta - a)\cos(\theta + m\theta)$$ = 1 + \cos(2\theta - 2m\theta) - \cos(2\theta - 2a) - \cos(2m\theta - 2a). 249. Perpendiculars are drawn from the angles A, B, C of an acute-angled triangle on the opposite sides, and produced to meet the circumscribing circle: if those produced parts be a, β , γ respectively, shew that $$\frac{a}{a} + \frac{b}{\beta} + \frac{c}{\gamma} = 2 (\tan A + \tan B + \tan C).$$ 250. If A and B are two angles, each positive, and less than 90° and such that $$3 \sin^2 A + 2 \sin^2 B = 1,$$ $3 \sin 2A - 2 \sin 2B = 0,$ prove that $A + 2B = 90^{\circ}$. 251. Prove that - (1) $\cot^{-1}(\tan 2x) + \cot^{-1}(-\tan 3x) = x$; - $(2) \quad \tan^{-1}\frac{1-x}{1+x} \tan^{-1}\frac{1-y}{1+y} = \sin^{-1}\frac{y-x}{\sqrt{1+x^2}\sqrt{1+y^2}}.$ - 252. In any triangle prove that $$a \sec \theta = b + c$$, where $$(b+c)\sin\theta = 2\sqrt{bc}\cos\frac{A}{2}$$. Compass observations are taken from a station to two points distant respectively 1250 yards and 1575 yards. The bearing of one point is 7° 30′ West of North, and that of the other is 42° 15′ East of North. Find the distance between the points by the aid of Tables. 253. Prove the identities: - (1) $\cos\beta\cos(2a-\beta) = \cos^2\alpha \sin^2(\alpha-\beta);$ - (2) $(x \tan a + y \cot a) (x \cot a + y \tan a)$ $$=(x+y)^2+4xy\cot^2 2a.$$ 254. If 2S = A + B + C, shew that $$\cos^2 S + \cos^2 (S - A) + \cos^2 (S - B) + \cos^2 (S - C)$$ = 2 + 2 \cos A \cos B \cos C. **255.** If $\sin^{-1} a + \sin^{-1} \beta + \sin^{-1} \gamma = \pi$, prove that $$a\sqrt{1-a^2}+\beta\sqrt{1-\beta^2}+\gamma\sqrt{1-\gamma^2}=2a\beta\gamma.$$ **256.** In a triangle a=36, $B=73^{\circ}$ 15′, $C=45^{\circ}$ 30′; find R and r by the aid of Tables. **257.** If ρ be the radius of the circle inscribed in the pedal triangle, prove that $$\rho = R (1 - \cos^2 A - \cos^2 B - \cos^2 C)$$ **258.** A, B, C are the tops of posts at equal intervals by the side of a road; t and t' are the tangents of the angles which AB and BC subtend at any point P; T is the tangent of the angle which the road makes with PB: shew that $$\frac{2}{T} = \frac{1}{t'} - \frac{1}{t}$$. 259. In any triangle prove that $$\frac{(\cos B + \cos C)(1 + 2\cos A)}{1 + \cos A - 2\cos^2 A} = \frac{b + c}{a}.$$ 260. With the notation of Art. 219, prove that $$\frac{AI}{AI_1} + \frac{BI}{BI_2} + \frac{CI}{CI_3} = 1.$$ 261. Prove that $$\sin^{-1}\frac{1}{3} + \sin^{-1}\frac{1}{3\sqrt{11}} + \sin^{-1}\frac{3}{\sqrt{11}} = \frac{\pi}{2}$$. 262. Find the relation between a, β , and γ in order that $\cot a \cot \beta \cot \gamma - \cot a - \cot \beta - \cot \gamma$ should vanish. **263.** If $A+B+C=\pi$, prove that $$\frac{\tan A}{\tan B \tan C} + \frac{\tan B}{\tan C \tan A} + \frac{\tan C}{\tan A \tan B}$$ $=\tan A + \tan B + \tan C - 2(\cot A + \cot B + \cot C).$ 264. A man travelling due North along a straight road observes that at a certain milestone two objects lie due N.E. and S.W. respectively, and that when he reaches the next milestone their directions have become S.S.E. and S.S.W. respectively. Find the distance between the two objects, and prove that the sum of their shortest distances from the road is exactly a mile. 265. Prove that $\tan 20^{\circ} + \tan 40^{\circ} + \sqrt{3} \tan 20^{\circ} \tan 40^{\circ} = \sqrt{3}$, 266. Solve the equation $\cot^3 \theta + 6 \csc 2\theta - 8 \csc^3 2\theta = 0.$ **267.** If $A + B + C = 180^{\circ}$, prove that $1 - 2 \sin B \cos C \cos A + \cos^2 A = \cos^2 B + \cos^2 C$, and if A+B+C=0, prove that $1 + 2\sin B\sin C\cos A + \cos^2 A = \cos^2 B + \cos^2 C.$ 268. If in a triangle cot A, cot B, cot C are in A.P., shew that a^2 , b^2 , c^2 are also in A.P. 269. If a, β, γ are the angles of a triangle, prove that $$\cos\left(\frac{3\beta}{2} + \gamma - 2a\right) + \cos\left(\frac{3\gamma}{2} + a - 2\beta\right) + \cos\left(\frac{3a}{2} + \beta - 2\gamma\right)$$ $$= 4\cos\frac{5a - 2\beta - \gamma}{4}\cos\frac{5\beta - 2\gamma - a}{4}\cos\frac{5\gamma - 2a - \beta}{4}.$$ 270. If the sum of the pairs of radii of the escribed circles of a triangle taken in order round the triangle be denoted by s_1 , s_2 , s_3 , and the corresponding differences by d_1 , d_2 , d_3 , prove that $$d_1d_2d_3 + d_1s_2s_3 + d_2s_3s_1 + d_3s_1s_2 = 0.$$ 271. If $$\cos A = \frac{3}{4}$$, shew that $$32 \sin \frac{A}{2} \sin \frac{5A}{2} = 11.$$ 272. Prove that all angles which satisfy the equation $$\tan^2 \theta + 2 \tan \theta = 1$$, are included in the formula
$(8n-1)\frac{\pi}{8} \pm \frac{\pi}{4}$ where n is zero or any integer. **273.** Prove (1) $$\cos\left(2 \tan^{-1} \frac{1}{7}\right) = \sin\left(4 \tan^{-1} \frac{1}{3}\right);$$ (2) $$\tan^{-1} \frac{3 \sin 2a}{5 + 3 \cos 2a} + \tan^{-1} \left(\frac{\tan a}{4}\right) = a.$$ 274. If in any triangle $$\cos\frac{A}{2} = \frac{1}{2}\sqrt{\frac{b}{c} + \frac{c}{b}},$$ shew that the square described with one side of the triangle as diagonal is equal to the rectangle contained by the other two sides. 275. Find B and C, having given $$A = 50^{\circ}$$, $b = 119$, $a = 97$. $\log 1 \cdot 19 = \cdot 0755470$, $L \sin 70^{\circ} = 9 \cdot 9729858$, $\log 9 \cdot 7 = \cdot 9867717$, $L \sin 70^{\circ} 1' = 9 \cdot 9730318$, $L \sin 50^{\circ} = 9 \cdot 8842540$. **276.** Circles are inscribed in the triangles $D_1E_1F_1$, $D_2E_2F_2$, $D_3E_3F_3$, where D_1 , E_1 , F_1 are the points of contact of the circle escribed to the side BC. Shew that if r_a , r_b , r_c be the radii of these circles $$\frac{1}{r_a}: \frac{1}{r_b}: \frac{1}{r_c} = 1 - \tan \frac{A}{4}: 1 - \tan \frac{B}{4}: 1 - \tan \frac{C}{4}.$$ 277. Reduce to its simplest form $$\tan^{-1}\left(\frac{x\cos\theta}{1-x\sin\theta}\right)-\cot^{-1}\left(\frac{\cos\theta}{x-\sin\theta}\right).$$ 278. If $\cos A + \cos B = 4 \sin^2 \frac{C}{2}$ in any triangle, shew that the sides are in A.P. - 279. Express $4\cos a\cos \beta\cos \gamma\cos \delta + 4\sin a\sin \beta\sin \gamma\sin \delta$ as the sum of four cosines. - **280.** If I be the in-centre of a triangle and ρ_1 , ρ_2 , ρ_3 are the circum-radii of the triangles BIC, CIA, AIB, prove that $$\rho_1 \rho_2 \rho_3 = 2rR^2$$. - 281. A monument ABCDE stands on level ground. At a point P on the ground the portions AB, AC, AD subtend angles a, β , γ respectively. Supposing that AB=2, AC=16, AD=18, and $a+\beta+\gamma=180^{\circ}$, find AP. - 282. If a and β be two angles both satisfying the equation $a \cos 2\theta + b \sin 2\theta = c$, prove that $$\cos^2 a + \cos^2 \beta = \frac{a^2 + ac + b^2}{a^2 + b^2}$$. - 283. If $C = 22\frac{1}{2}^{\circ}$, $a = \sqrt{2}$, $b = \sqrt{2 + \sqrt{2}}$, solve the triangle. - **284.** If $A + B + C = 180^{\circ}$, prove that $\sin^3 A + \sin^3 B + \sin^3 C$ $$=3\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}+\cos\frac{3A}{2}\cos\frac{3B}{2}\cos\frac{3C}{2}.$$ 285. In the ambiguous case in which a, b, A are given, if one angle of one triangle be twice the corresponding angle of the other triangle, shew that $$a\sqrt{3} = 2b \sin A$$, or $4b^3 \sin^2 A = a^2(a+3b)$. **286.** If the roots of $x^3 - px^2 - r = 0$ are $\tan a$, $\tan \beta$, $\tan \gamma$, find the value of $\sec^2 a \sec^2 \beta \sec^2 \gamma$. 287. If $$a+\beta+\gamma=\pi$$, and $$\tan\frac{1}{4}(\beta+\gamma-a)\tan\frac{1}{4}(\gamma+a-\beta)\tan\frac{1}{4}(a+\beta-\gamma)=1,$$ prove that $1 + \cos a + \cos \beta + \cos \gamma = 0$. 288. Prove that the side of a regular heptagon inscribed in a circle of radius unity is given by one of the roots of the equation $$x^6 - 7x^4 + 14x^2 - 7 = 0,$$ and give the geometrical signification of the other roots. **289.** If in a triangle the angle B is 45° , prove that $$(1 + \cot A)(1 + \cot C) = 2.$$ 290. If twice the square on the diameter of a circle is equal to the sum of the squares on the sides of the inscribed triangle ABC, prove that $$\sin^2 A + \sin^2 B + \sin^2 C = 2$$, and that the triangle is right-angled. 291. If $\cos A = \tan B$, $\cos B = \tan C$, $\cos C = \tan A$, prove that $\sin A = \sin B = \sin C = 2 \sin 18^{\circ}$. - 292. In any triangle shew that a, b, c are the roots of the equation $x^3 2sx^2 + (r^2 + s^2 + 4Rr)x 4Rrs = 0.$ - 293. Shew that $\sin \frac{\pi}{14}$ is a root of the equation $$8x^3 - 4x^2 - 4x + 1 = 0.$$ **294.** The stones from a circular field (radius r) are collected into n heaps at regular intervals along the hedge. Prove that the distance a labourer will have to travel with a wheelbarrow, which justs holds one heap, in bringing them together to one of the heaps (supposing him to start from this heap) is $4r \cot \frac{\pi}{2n}$. 295. Shew that $$\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = \left(\frac{1}{2}\right)^7.$$ 296. If x, y, z are the perpendiculars drawn to the sides from any point within a triangle, shew that $x^2+y^2+z^2$ is a minimum when $$\frac{x}{a} = \frac{y}{b} = \frac{z}{c} = \frac{2\Delta}{a^2 + b^2 + c^2}.$$ 297. If r_a , r_b , r_c , r_d be the radii of the circles which touch each side and the adjacent two sides produced of a quadrilateral, prove that $$\frac{a}{r_a} + \frac{c}{r_c} = \frac{b}{r_b} + \frac{d}{r_d}.$$ 298. If the diameters AA', BB', CC' of the circum-circle cut the sides BC, CA, AB in P, Q, R respectively, prove that $$\begin{split} \frac{1}{AP} + \frac{1}{BQ} + \frac{1}{CR} &= \frac{2}{R}, \\ \frac{1}{A'P} + \frac{1}{B'Q} + \frac{1}{C''R} &= \frac{1}{2R}(4 + \sec A \sec B \sec C). \end{split}$$ 299. If a, β , γ are angles, unequal and less than 2π , which satisfy the equation $\frac{a}{\cos \theta} + \frac{b}{\sin \theta} + c = 0$, prove that $$\sin(a+\beta) + \sin(\beta+\gamma) + \sin(\gamma+a) = 0.$$ 300. Shew that $$\left(\sec^{2}\frac{\pi}{7} + \sec^{2}\frac{2\pi}{7} + \sec^{2}\frac{3\pi}{7}\right) \left(\csc^{2}\frac{\pi}{7} + \csc^{2}\frac{2\pi}{7} + \csc^{2}\frac{3\pi}{7}\right) = 192,$$ TABLES OF LOGARITHMS OF NUMBERS, ANTILOGARITHMS, NATURAL AND LOGARITHMIC SINES, COSINES, AND TANGENTS. н. к. е. т. 26 ## Logarithms. | 0 | 1 | 2 | | | | | | | | | | - | | | 1 | _ | | - | | |--------------------------------------|--|---|--
--
--|---|---
---|---|--|--|--|---|---|---
--|--|--|--|---| | | | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 0000
0414
0792
1139
1461 | 0043
0453
0828
1173
1492 | 0086
0492
0864
1206
1523 | 0128
0531
0899
1239
1553 | 0170
0569
0931
1271
1584 | 0212
0607
0969
1303
1614 | 0253
0645
1004
1335
1644 | 0294
0682
1038
1367
1673 | 0334
0719
1072
1399
1703 | 0374
0755
1106
1430
1732 | 4 4 9 9 9 | 8 1 | 11 | 15 :
14 :
13 : | 19 :
17 :
16 : | 23
21
19 | 26
24
23 | 30
28
26 | 34
31
29 | Car en en en en en | | 1761
2041
2304
2553
2788 | 1790
2068
2330
2577
2810 | 1818
2095
2355
2601
2833 | 1847
2122
2380
2625
2856 | 1875
2148
2405
2648
2878 | 1903
2175
2430
2672
2900 | 1931
2201
2455
2695
2923 | 1959
2227
2480
2718
2945 | 1987
2253
2504
2742
2967 | 2014
2279
2529
2765
2989 | 3 3 2 2 2 | 6
5
5
5
4 | 8 8 7 7 7 7 | 11
10
9 | 13
12
12 | 16
15
14 | 18
17
16 | 21
20
19 | 24
22
21 | 00000 | | 3010
3222
3424
3617
3802 | 3032
3243
3444
3636
3820 | 3054
3263
3464
3655
3838 | 3075
3284
3483
3674
3856 | 3096
3304
3502
3692
3874 | 3118
3324
3522
3711
3892 | 3139
3345
3541
3729
3909 | 3160
3365
3560
3747
3927 | 3181
3385
3579
3766
3945 | 3201
3404
3598
3784
3962 | 2
2
2
2
2 | 1 | 6
6
6
5 | 8. | 10
10
9 | 12
12
11 | 14
14
13 | 16
15
15 | 18
17
17 | 6 6 6 6 6 | | 3979
4150
4314
4472
4624 | 3997
4166
4330
4487
4639 | 4014
4183
-4346
4502
4654 | 4031
4200
4362
4518
4669 | 4048
4216
4378
4533
4683 | 4065
4232
4393
4548
4698 | 4082
4249
4409
4564
4713 | 4099
4265
4425
4579
4728 | 4116
4281
4440
4594
4742 | 4133
4298
4456
4609
4757 | 2
2
2
2
1 | 3 3 3 3 3 | 5
5
5
5
4 | 7
7
6
6
6 | | | 11
11
11 | 13
13
12 | 15
14
14 | 71 61 61 61 61 | | 4771
4914
5051
5185
5315 | 4786
4928
5065
5198
5328 | 4800
4942
5079
5211
5340 | 4814
4955
5092
5224
5353 | 4829
4969
5105
5237
5366 | 4843
4983
5119
5250
5378 | 4857
4997
5132
5263
5391 | 4871
5011
5145
5276
5403 | 4886
5024
5159
5289
5416 | 4900
5038
5172
5302
5428 | 1
1
1
1
1 | 3 3 3 3 3 | 4
4
4
4 | 6
6
5
5
5 | 7
7
6
6 | 9
8
8
8 | 10
9
9 | 11
11
10 | 12
12
12 | 76 | | 5441
5563
5682
5798
5911 | 5453
5575
5694
5809
5922 | 5465
5587
5705
5821
5933 | 5478
5599
5717
5832
5944 | 5490
5611
5729
5843
5955 | 5502
5623
5740
5855
5966 | 5514
5635
5752
5866
5977 | 5527
5647
5763
5877
5988 | 5539
5658
5775
5888
5999 | 5551
5670
5786
5899
6010 | 1 1 1 1 1 | 2
2
2
2
2
2 | 4
4
3
3
3 | 5
5
5
5
4 | 6
6
6
6
5 | 77777 | | 10
9
9 | 11
10
10 | 80
81
82
83 | | 6021
6128
6232
6335
6435 | 6031
6138
6243
6345
6444 | 6042
6149
6253
6355
6454 | 6053
6160
6263
6365
6464 | 6064
6170
6274
6375
6474 | 6075
6180
6284
6385
6481 | 6085
6191
6294
6395
6493 | 6096
6201
6304
6405
6503 | 6107
6212
6314
6415
6513 | 6117
6222
6325
6425
6522 | 1
1
1
1
1 | 2 2 2 2 2 | 3
3
3
3
3 | 4 4 4 4 4 | 5
5
5
5
5
5 | 6
6
6
6
6 | 8 7 7 7 7 | 98888 | 10
9
9
9 | 85
86
87
88
89 | | 6532
6628
6721
6812
6902 | 6542
6637
6730
6821
6911 | 6551
6646
6739
6830
6920 | 6561
6656
6749
6839
6928 | 6571
6665
6758
6848
6937 | 6580
6675
6767
6857
6946 | 6590
6684
6776
6866
6955 | 6599
6693
6785
6875
6964 | 6609
6702
6794
6884
6972 | 6618
6712
6803
6893
6981 | 1
1
1
1
1 | 2
2
2
2
2
2 | 3 3 3 3 | 4
4
4
4
4 | 5
5
5
4
4 | 6
5
5
5 | 77666 | 8 7 7 7 7 | 98888 | 90
91
92
93
94 | | 6990
7076
7160
7243
7324 | 6998
7084
7168
7251
7332 | 7007
7093
7177
7259
7340 | 7016
7101
7185
7267
7348 | 7024
7110
7193
7275
7356 | 7033
7118
7202
7284
7364 | 7042
7126
7210
7292
7372 | 7050
7135
7218
7300
7380 | 7059
7143
7226
7308
7388 | 7067
7152
7235
7316
7396 | 1
1
1
1
1 | 2
2
2
2
2
2 | 3 3 2 2 2 | 3 3 3 3 | 4 4 4 4 | 5
5
5
5
5
5 | | | 88744 | 95 % 55 % 59 | | | 0414 070792 071139 11461 1761 12041 1761 2041 2553 3010 3010 3010 3022 3424 3617 3617 3617 4624 4771 4914 5061 55315 5411 5563 5798 6028 6721 6128 6731 6628 6731 6812 6902 6900 7076 7160 6900 7076 7160 6900 | 0414 0453
0792 0852
11139 1173
11461 1492
11761 12085
2031 2304 2330
2553 2577
2788 2810
3010 3032
2553 2577
2788 2810
3012 3322
3243
3424 3444
3617 3636
4314 4330
3802 3820
3879 4150 4166
4314 4928
4472 4487
4624 4639
4771 4786
4914 4928
5051 5065
5515 5198
55315 5528
5441 5453
5563 5575
5582 5694
5798 5509
5911 5922
6021 6031
6128 6135
6435 6436
6436 6436
6436 6436
6436 6436
6437 6436
6437 6436
6437 6436
6437 6437 6437
6438 6438 6437
6439 6439 6439
6437
6439 6439 6437
6439 6439 6437
6439 6439 6439 6439 6439 6437
6439 6439 6439 6439 6439 6439 6439 6439 | 0414 0453 0492 0792 0828 0861 1139 1173 1206 1161 1192 1523 1761 1206 1208 2095 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2005 | 0414 0453 0492 0531 0792 0828 0841 0839 1130 1173 1206 1239 11401 1192 1523 1553 1761 1790 1818 1847 2041 2068 2095 2122 2304 2330 2355 2380 2533 2577 2601 2625 2788 2810 2833 2856 3010 3032 3054 3075 3222 2343 3243 3284 3424 3444 3464 3483 3617 3666 4653 3656 3674 4130 4166 4183 4200 4314 4304 4364 4362 4472 4487 4552 4518 4624 4639 4654 4669 4771 4786 4800 4814 4914 4928 4942 4955 <th>6114 0453 0492 6531 0569 6792 0828 0841 0899 0831 1139 1173 1206 1239 1271 1161 1492 1523 1553 1584 1761 1492 1623 1553 1584 1761 1492 1623 1584 1584 1761 1205 2055 2122 2148 2934 2330 2355 2380 2405 2577 2601 2625 2648 2788 2810 2833 2856 2878 3010 3032 3064 3075 3006 3322 3243 3263 3284 3304 3124 3414 3464 3483 3502 3802 3802 3803 3655 3874 3892 3902 3807 3804 3416 4302 4416 4416 4416 4416 4414 4431 4404</th> <th>6114 0452 0492 6531 0569 6067 6792 0828 0841 6889 6931 6089 1139 1173 1206 1230 1271 13.08 1161 1492 1523 1553 1584 1614 1761 1790 1818 1847 1875 1903 2041 2068 2055 2122 2148 2175 2504 2330 2355 2380 2405 2430 2578 2810 2833 2856 2878 2900 3010 3032 3644 3075 3096 3118 3010 3032 3364 3075 3096 3118 3222 3243 3243 3284 3304 3324 3414 3464 3483 3502 3522 3617 3363 3655 3674 3692 3711 3502 3820 3838 3502</th> <th>6114 0453 0492 6531 0569 0667 0645 6792 0828 0841 0899 0831 0699 0831 0693 1031 1069 1041 1069 1041 1644 1642 2218 2272 2695 2285 2805 2805 2805 2805 2805 2805 2805 2805 2805 2805 2805 2805 28</th> <th>0414 0453 0492 0531 0569 0667 0645 0682 0792 0828 0841 0899 0811 0699 1081 1099 10104 1038 1139 1173 1206 1239 1271 1333 1335 1367 1161 1492 1523 1553 1884 1614 1644 1673 1761 1790 1818 1847 1875 1903 1931 1959 2041 2068 2055 2122 2148 2175 2201 2227 2504 2330 2350 2380 2405 2122 2648 2672 2695 2718 2583 2577 2601 2625 2648 2672 2695 2718 2788 2810 2833 3286 2878 2900 2923 2945 3010 3032 3654 3673 3348 3343 3345 3365 <</th> <th> 0.114 0.453 0.492 0.581 0.569 0.667 0.645 0.682 0.719 0.792 0.828 0.845 0.899 0.813 0.699 0.913 1139 1173 1206 1239 1271 13.8 1335 1367 1389 1161 1492 15.23 15.53 15.44 1614 1644 1673 1708 1761 1790 1818 1847 1875 1903 1931 1959 1987 2041 2068 2035 2122 2148 2175 2201 2227 2253 22304 2330 2355 2380 2405 2430 2455 2456 2450 2455 2533 2577 2601 2625 2648 2672 2695 2718 2742 2788 2810 2833 2856 2878 2900 2923 2945 2967 2788 2810 2833 3286 2878 2900 2923 2945 2967 3010 3032 3054 3075 3096 3118 3139 3166 3181 3222 3243 3263 3284 3304 3324 3345 3365 3385 3424 3444 3464 3483 3502 3522 3541 3560 3579 3617 3036 3655 3674 3672 3711 3729 3747 3766 3390 3892 3838 3856 3874 3892 3909 3927 3945 4130 4166 4183 4200 4216 4232 4249 4265 4281 4412 4487 4502 4518 4533 4584 4504 4779 4784 4624 4639 4654 4669 4683 4698 4713 4728 4742 4771 4786 4900 4814 4829 4843 4857 4874 4771 4786 4900 4814 4829 4843 4857 4871 4598 4914 4928 4942 4955 4969 4983 4997 5011 5024 4914 4928 4942 4955 54969 4983 4997 5011 5024 4771 4786 4500 4814 4829 4843 4857 4871 4586 4914 4928 4942 4955 5496 4883 4897 5011 5024 5051 5065 5079 5092 5105 5119 5126 5145 5159 5185 5198 5211 5224 5237 5250 5263 5276 5289 5315 5328 5340 5353 5366 5378 5391 5403 5416 5441 5453 5465 5478 5490 5502 5514 5577 5589 5589 5890 5821 5832 5645 5855 5866 5877 5888 5911 5922 5933 5944 5055 5966 5677 5988 5990 6021 6031 6042 6053 6064 6075 6085 6096 6096 6032 6634 6635 6</th> <th> 0.114 0.453 0.492 0.581 0.569 0.667 0.645 0.682 0.719 0.755 0.759 0.852 0.851 0.689 0.631 0.699 0.104 10.38 10.72 11.04 1139 1173 12.06 12.39 12.71 13.31 1335 1367 1389 1430 1161 1492 15.23 15.53 15.84 1614 1644 1673 1703 1732 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 2304 2330 2355 2380 2405 2430 2455 2480 2504 2252 2533 2577 2001 2.625 2648 2.672 2.695 2718 2742 2765 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 3010 3032 3054 3075 3006 3118 3139 3160 3181 3201 3222 3243 3263 3284 3304 3324 3345 3365 3385 3304 3222 3243 3263 3838 3592 3522 3541 3560 3579 3598 3361 3363 3655 3674 3612 3711 3729 3747 3766 3784 3390 3392 3383 3856 8278 3892 3890 3927 3945 3946 4130 4166 4183 4200 4216 4232 4249 4265 4281 4298 4464 4639 4654 4669 4683 4698 4713 4728 4742 4757 4771 4786 4800 4814 4829 4833 4857 4871 4886 4900 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 5051 5065 5079 5092 5105 5119 5122 5145 5159 5175 5582 5589 5340 5353 5366 5378 5391 5403 5116 5428 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 5582 5694 5705 5599 5611 5623 5635 5647 5688 5670 5582 5694 5705 5392 5363 5364 5675 5589 5800 5091 5992 5933 5944 5955 5966 5877 5988 5809 6010 6021 6031 6042 6053 6664 6075 6085 6066 6077 6182 6032 6637 6646 6656 6665 6675 6685 6676 6785 6846 6856 6867 6846 6656 6665 6676 6677 6785 6844 6893 6892 6937 6946 6955 6984 6972 6981 6090 60908 7007 7016 67</th> <th> 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 40792 0828 0841 0899 0631 0699 0601 1038 1367 1369 1430 1313 1173 1206 1239 1271 1343 1335 1367 1369 1430 3 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 1761 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 1761 1206 2005 2122 2148 2175 2201 227 2253 2279 2304 2330 2355 2380 2405 2430 2455 2480 2544 2529 2253 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 2883 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 2882 2810 2833 2856 2878 2900 2923 2945 2967 2989 2 2 2 2 2 2 2 2 2 </th> <th>0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 8 7 1139 1173 1206 1239 1271 1303 1335 1367 1369 1430 3 6 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 1732 1732 1732 1732 1732 1 1373 1335 1367 1369 1430 3 6 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 1732 1732 1732 1732 1732 1732 1732 1732</th> <th>0414 0452 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 0792 0828 0841 0899 0631 0699 1004 1038 1072 1106 3 7 10 1139 1173 1206 1230 1271 13.08 1335 1367 1389 1430 3 6 10 1161 1492 1523 1553 1584 1614 1644 1673 1703 1703 1732 3 6 9 1 1761 1492 1523 1553 1584 1614 1644 1673 1703 1703 1732 3 6 9 1 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 2004 2330 2355 2380 2405 2430 2455 2480 2504 2299 2 5 7 7 2601 2625 2648 2672 2695 2718 2742 2765 2 5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th> <th>0414 0452 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 15 0792 0852 0845 0889 0894 0689 0601 0404 1038 1072 1106 3 7 10 11 1139 1173 1206 1239 1271 1308 1335 1367 1389 1430 3 6 10 13 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 1761 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 2041 2068 2055 2122 2148 2175 2201 227 2253 2279 2 5 7 18 204 2330 2355 2380 2405 2430 2455 2480 2504 2529 2 5 7 19 2588 2810 2833 2856 2878 2900 2923 2455 2480 2504 2529 2 5 7 7 9 18 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 2 4 7 9 9 18 22 2343 3243 3243 3243 3244 3344 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 8 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 8 3424 3444 4304 4364 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 8 3424 3444 4304 4403 4408 4665 4082 4099 4116 4133 2 3 5 7 4 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 5 7 6 4472 4472 4476 4503 4346 4362 4378 4389 3409 327 3945 3902 2 4 5 7 8 4472 4472 4476 4508 4689 4683 4688 4698 4713 4728 4747 4502 4518 4533 4588 4564 4579 4594 4409 4156 2 3 5 6 4624 4639 4654 4669 4683 4698 4713 4728 4747 4757 1 3 4 6 471 4786 4800 4814 4829 4833 4849 7 5011 5024 5038 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4740 4757 1 3 4 6 471 4786 4800 4814 4829 4843 4857 4871 4886 4900 1 3 4 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4740 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 3 4 6 6 4624 673 676 676 676 676 676 6785 6795 6896 6897 6898 5899 1 2 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</th> <th>0414 0452 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19: 0792 0895 0834 0896 0631 0699 1004 1038 1072 1106 3 7 10 14 18 11 11 11 11 11 11 11 11 11 11 11 11</th> <th>0414 0453 0492 0551 0569 0607 0645 0682 0719 0755 4 8 11 15 19 20 17 13 0 17 10 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18</th> <th>0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 151923 26 0792 0888 0864 0899 06931 0699 1004 1038 1072 1106 3 7 10 14 17 21 24 1139 1173 1206 1239 1271 1393 1335 1347 1389 1430 3 6 10 13 16 19 23 14 161 1492 1523 1553 1584 1614 1644 1673 1708 1732 3 6 9 12 15 18 21 1761 1790 1818 1847 1875 1903 1931 1969 1987 2014 3 6 8 11 14 17 20 20 11 2930 2939 2935 2930 2935 2931 2932 2934 2935 2930 2935 2936 2930 2935 2934 2935 2930 2935 2934 2935 2930 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935
2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2934 2935 2935 2935 2935 2935 2935 2935 2935</th> <th>0411 0453 0492 0531 0459 0697 0645 0682 0719 0755 4 8 11 15 19 23 26 30 0792 0888 0846 0859 0693 10693 1040 1083 1072 1106 3 7 10 14 17 21 24 28 1139 1173 1206 1239 1271 123 1335 1367 1389 1430 3 6 10 13 16 19 23 26 1166 1 492 1523 1553 1584 1614 1644 1673 1703 1703 1732 3 6 9 12 15 18 21 24 1761 1790 1818 1847 1875 1903 1931 1959 1957 2014 3 6 8 11 14 17 20 22 21 21 22 21 21 22 27 22 23 22 24 25 25 8 11 13 16 18 21 29 304 2339 2355 2389 2405 2139 2455 2480 2544 2529 2 5 7 10 12 15 17 20 25 18</th> <th>0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0792 0898 0864 0899 0931 1339 1173 1296 1239 1271 133 1335 1367 1389 1430 3 6 10 13 16 19 23 26 29 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1761 1790 1818 1847 1875 1903 1931 1959 1957 2014 208 2095 2122 2148 2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 27 2944 2390 235 2355 2380 2405 2130 2455 2480 2504 2505 2518 2577 2601 2625 2648 2672 2665 2718 2742 2765 2 5 7 10 12 15 17 20 22 27 28 28 28 28 20 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24</th> | 6114 0453 0492 6531 0569 6792 0828 0841 0899 0831 1139 1173 1206 1239 1271 1161 1492 1523 1553 1584 1761 1492 1623 1553 1584 1761 1492 1623 1584 1584 1761 1205 2055 2122 2148 2934 2330 2355 2380 2405 2577 2601 2625 2648 2788 2810 2833 2856 2878 3010 3032 3064 3075 3006 3322 3243 3263 3284 3304 3124 3414 3464 3483 3502 3802 3802 3803 3655 3874 3892 3902 3807 3804 3416 4302 4416 4416 4416 4416 4414 4431 4404 | 6114 0452 0492 6531 0569 6067 6792 0828 0841 6889 6931 6089 1139 1173 1206 1230 1271 13.08 1161 1492 1523 1553 1584 1614 1761 1790 1818 1847 1875 1903 2041 2068 2055 2122 2148 2175 2504 2330 2355 2380 2405 2430 2578 2810 2833 2856 2878 2900 3010 3032 3644 3075 3096 3118 3010 3032 3364 3075 3096 3118 3222 3243 3243 3284 3304 3324 3414 3464 3483 3502 3522 3617 3363 3655 3674 3692 3711 3502 3820 3838 3502 | 6114 0453 0492 6531 0569 0667 0645 6792 0828 0841 0899 0831 0699 0831 0693 1031 1069 1041 1069 1041 1644 1642 2218 2272 2695 2285 2805 2805 2805 2805 2805 2805 2805 2805 2805 2805 2805 2805 28 | 0414 0453 0492 0531 0569 0667 0645 0682 0792 0828 0841 0899 0811 0699 1081 1099 10104 1038 1139 1173 1206 1239 1271 1333 1335 1367 1161 1492 1523 1553 1884 1614 1644 1673 1761 1790 1818 1847 1875 1903 1931 1959 2041 2068 2055 2122 2148 2175 2201 2227 2504 2330 2350 2380 2405 2122 2648 2672 2695 2718 2583 2577 2601 2625 2648 2672 2695 2718 2788 2810 2833 3286 2878 2900 2923 2945 3010 3032 3654 3673 3348 3343 3345 3365 < | 0.114 0.453 0.492 0.581 0.569 0.667 0.645 0.682 0.719 0.792 0.828 0.845 0.899 0.813 0.699 0.913 1139 1173 1206 1239 1271 13.8 1335 1367 1389 1161 1492 15.23 15.53 15.44 1614 1644 1673 1708 1761 1790 1818 1847 1875 1903 1931 1959 1987 2041 2068 2035 2122 2148 2175 2201 2227 2253 22304 2330 2355 2380 2405 2430 2455 2456 2450 2455 2533 2577 2601 2625 2648 2672 2695 2718 2742 2788 2810 2833 2856 2878 2900 2923 2945 2967 2788 2810 2833 3286 2878 2900 2923 2945 2967 3010 3032 3054 3075 3096 3118 3139 3166 3181 3222 3243 3263 3284 3304 3324 3345 3365 3385 3424 3444 3464 3483 3502 3522 3541 3560 3579 3617 3036 3655 3674 3672 3711 3729 3747 3766 3390 3892 3838 3856 3874 3892 3909 3927 3945 4130 4166 4183 4200 4216 4232 4249 4265 4281 4412 4487 4502 4518 4533 4584 4504 4779 4784 4624 4639 4654 4669 4683 4698 4713 4728 4742 4771 4786 4900 4814 4829 4843 4857 4874 4771 4786 4900 4814 4829 4843 4857 4871 4598 4914 4928 4942 4955 4969 4983 4997 5011 5024 4914 4928 4942 4955 54969 4983 4997 5011 5024 4771 4786 4500 4814 4829 4843 4857 4871 4586 4914 4928 4942 4955 5496 4883 4897 5011 5024 5051 5065 5079 5092 5105 5119 5126 5145 5159 5185 5198 5211 5224 5237 5250 5263 5276 5289 5315 5328 5340 5353 5366 5378 5391 5403 5416 5441 5453 5465 5478 5490 5502 5514 5577 5589 5589 5890 5821 5832 5645 5855 5866 5877 5888 5911 5922 5933 5944 5055 5966 5677 5988 5990 6021 6031 6042 6053 6064 6075 6085 6096 6096 6032 6634 6635 6 | 0.114 0.453 0.492 0.581 0.569 0.667 0.645 0.682 0.719 0.755 0.759 0.852 0.851 0.689 0.631 0.699 0.104 10.38 10.72 11.04 1139 1173 12.06 12.39 12.71 13.31 1335 1367 1389 1430 1161 1492 15.23 15.53 15.84 1614 1644 1673 1703 1732 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 2304 2330 2355 2380 2405 2430 2455 2480 2504 2252 2533 2577 2001 2.625 2648 2.672 2.695 2718 2742 2765 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 3010 3032 3054 3075 3006 3118 3139 3160 3181 3201 3222 3243 3263 3284 3304 3324 3345 3365 3385 3304 3222 3243 3263 3838 3592 3522 3541 3560 3579 3598 3361 3363 3655 3674 3612 3711 3729 3747 3766 3784 3390 3392 3383 3856 8278 3892 3890 3927 3945 3946 4130 4166 4183 4200 4216 4232 4249 4265 4281 4298 4464 4639 4654 4669 4683 4698 4713 4728 4742 4757 4771 4786 4800 4814 4829 4833 4857 4871 4886 4900 4914 4928 4942 4955 4969 4983 4997 5011 5024 5038 5051 5065 5079 5092 5105 5119 5122 5145 5159 5175 5582 5589 5340 5353 5366 5378 5391 5403 5116 5428 5441 5453 5465 5478 5490 5502 5514 5527 5539 5551 5582 5694 5705 5599 5611 5623 5635 5647 5688 5670 5582 5694 5705 5392 5363 5364 5675 5589 5800 5091 5992 5933 5944 5955 5966 5877 5988 5809 6010 6021 6031 6042 6053 6664 6075 6085 6066 6077 6182 6032 6637 6646 6656 6665 6675 6685 6676 6785 6846 6856 6867 6846 6656 6665 6676 6677 6785 6844 6893 6892 6937 6946 6955 6984 6972 6981 6090 60908 7007 7016 67 | 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 40792 0828 0841 0899 0631 0699 0601 1038 1367 1369 1430 1313 1173 1206 1239 1271 1343 1335 1367 1369 1430 3 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 1761 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 1761 1206 2005 2122 2148 2175 2201 227 2253 2279 2304 2330 2355 2380 2405 2430 2455 2480 2544 2529 2253 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 2883 2577 2601 2625 2648 2672 2695 2718 2742 2765 2 2882 2810 2833 2856 2878 2900 2923 2945 2967 2989 2 2 2 2 2 2 2 2 2 | 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 8 7 1139 1173 1206 1239 1271 1303 1335 1367 1369 1430 3 6 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 1732 1732 1732 1732 1732 1 1373 1335 1367 1369 1430 3 6 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 1732 1732 1732 1732 1732 1732 1732 1732 | 0414 0452 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 0792 0828 0841 0899 0631 0699 1004 1038 1072 1106 3 7 10 1139 1173 1206 1230 1271 13.08 1335 1367 1389 1430 3 6 10 1161 1492 1523 1553 1584 1614 1644 1673 1703 1703 1732 3 6 9 1 1761 1492 1523 1553 1584 1614 1644 1673 1703 1703 1732 3 6 9 1 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 2004 2330 2355 2380 2405 2430 2455 2480 2504 2299 2 5 7 7 2601 2625 2648 2672 2695 2718 2742 2765 2 5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0414 0452 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 15 0792 0852 0845 0889 0894 0689 0601 0404 1038 1072 1106 3 7 10 11 1139 1173 1206 1239 1271 1308 1335 1367 1389 1430 3 6 10 13 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 1761 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 1761 1790 1818 1847 1875 1903 1931 1959 1987 2014 3 6 8 11 2041 2068 2055 2122 2148 2175 2201 227 2253 2279 2 5 7 18 204 2330 2355 2380 2405 2430 2455 2480 2504 2529 2 5 7 19 2588 2810 2833 2856 2878 2900 2923 2455 2480 2504 2529 2 5 7 7 9 18 2788 2810 2833 2856 2878 2900 2923 2945 2967 2989 2 4 7 9 9 18 22 2343 3243 3243 3243 3244 3344 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 8 3424 3444 3464 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 8 3424 3444 4304 4364 3483 3502 3522 3541 3560 3579 3598 2 4 6 8 8 3424 3444 4304 4403 4408 4665 4082 4099 4116 4133 2 3 5 7 4 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 2 3 5 7 6 4472 4472 4476 4503 4346 4362 4378 4389 3409 327 3945 3902 2 4 5 7 8 4472 4472 4476 4508 4689 4683 4688 4698 4713 4728 4747 4502 4518 4533 4588 4564 4579 4594 4409 4156 2 3 5 6 4624 4639 4654 4669 4683 4698 4713 4728 4747 4757 1 3 4 6 471 4786 4800 4814 4829 4833 4849 7 5011 5024 5038 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4740 4757 1 3 4 6 471 4786 4800 4814 4829
4843 4857 4871 4886 4900 1 3 4 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4740 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 4 6 6 4624 4639 4654 4669 4683 4698 4713 4728 4757 1 3 3 4 6 6 4624 673 676 676 676 676 676 6785 6795 6896 6897 6898 5899 1 2 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0414 0452 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19: 0792 0895 0834 0896 0631 0699 1004 1038 1072 1106 3 7 10 14 18 11 11 11 11 11 11 11 11 11 11 11 11 | 0414 0453 0492 0551 0569 0607 0645 0682 0719 0755 4 8 11 15 19 20 17 13 0 17 10 18 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18 | 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 151923 26 0792 0888 0864 0899 06931 0699 1004 1038 1072 1106 3 7 10 14 17 21 24 1139 1173 1206 1239 1271 1393 1335 1347 1389 1430 3 6 10 13 16 19 23 14 161 1492 1523 1553 1584 1614 1644 1673 1708 1732 3 6 9 12 15 18 21 1761 1790 1818 1847 1875 1903 1931 1969 1987 2014 3 6 8 11 14 17 20 20 11 2930 2939 2935 2930 2935 2931 2932 2934 2935 2930 2935 2936 2930 2935 2934 2935 2930 2935 2934 2935 2930 2935 2934 2935 2935 2935 2935 2935 2935 2935 2935 | 0411 0453 0492 0531 0459 0697 0645 0682 0719 0755 4 8 11 15 19 23 26 30 0792 0888 0846 0859 0693 10693 1040 1083 1072 1106 3 7 10 14 17 21 24 28 1139 1173 1206 1239 1271 123 1335 1367 1389 1430 3 6 10 13 16 19 23 26 1166 1 492 1523 1553 1584 1614 1644 1673 1703 1703 1732 3 6 9 12 15 18 21 24 1761 1790 1818 1847 1875 1903 1931 1959 1957 2014 3 6 8 11 14 17 20 22 21 21 22 21 21 22 27 22 23 22 24 25 25 8 11 13 16 18 21 29 304 2339 2355 2389 2405 2139 2455 2480 2544 2529 2 5 7 10 12 15 17 20 25 18 | 0414 0453 0492 0531 0569 0607 0645 0682 0719 0755 4 8 11 15 19 23 26 30 34 0792 0898 0864 0899 0931 1339 1173 1296 1239 1271 133 1335 1367 1389 1430 3 6 10 13 16 19 23 26 29 1461 1492 1523 1553 1584 1614 1644 1673 1703 1732 3 6 9 12 15 18 21 24 27 1761 1790 1818 1847 1875 1903 1931 1959 1957 2014 208 2095 2122 2148 2175 2201 2227 2253 2279 3 5 8 11 13 16 18 21 24 27 2944 2390 235 2355 2380 2405 2130 2455 2480 2504 2505 2518 2577 2601 2625 2648 2672 2665 2718 2742 2765 2 5 7 10 12 15 17 20 22 27 28 28 28 28 20 22 23 24 24 24 24 24 24 24 24 24 24 24 24 24 | #### 12 6 1 LOGARITHMS. ## Logarithms. | | | | | | | | 8 | 6111111 | | | | | | | | | | | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|-----------------------|-----------------------|----------------------------|-----------------------|------------------|-----------------------|-----------------------|-----------------------| | No. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 55
56
57
58
59 | 7404
7482
7559
7634
7709 | 7412
7490
7566
7642
7716 | 7419
7497
7574
7649
7723 | 7427
7505
7582
7657
7731 | 7435
7513
7589
7664
7738 | 7443
7520
7597
7672
7745 | 7451
7528
7604
7679
7752 | 7459
7536
7612
7686
7760 | 7466
7543
7619
7694
7767 | 7474
7551
7627
7701
7774 | 1 1 1 1 1 | 2
2
2
1
1 | 2 2 2 2 2 | 3 3 3 3 3 | 4 4 4 4 | 5
5
4
4 | 5
5
5
5
5 | 6
6
6
6
6 | 777777 | | 60
61
62
63
64 | 7782
7853
7924
7993
8062 | 7789
7860
7931
8000
8069 | 7796
7868
7938
8007
8075 | 7803
7875
7945
8014
8082 | 7810
7882
7952
8021
8089 | 7818
7889
7959
8028
8096 | 7825
7896
7966
8035
8102 | 7832
7903
7973
8041
8109 | 7839
7910
7980
8048
8116 | 7846
7917
7987
8055
8122 | 1
1
1
1
1 | 1
1
1
1
1 | 2 2 2 2 2 | 333333 | 4 4 3 3 3 | 4
4
4
4 | 5 5 5 5 | 6
6
5
5 | 6
6
6
6 | | 65
66
67
68
69 | 8129
8195
8261
8325
8388 | 8136
8202
8267
8331
8395 | 8142
8209
8274
8338
8401 | 8149
8215
8280
8344
8407 | 8156
8222
8287
8351
8414 | 8162
8228
8293
8357
8420 | 8169
8235
8299
8363
8426 | 8176
8241
8306
8370
8432 | 8182
8248
8312
8376
8439 | 8189
8254
8319
8382
8445 | 1 1 1 1 1 | 1
1
1
1 | 2 2 2 2 2 2 | 3 3 3 3 3 5 4 | 3 3 3 3 | 4 4 4 4 | 5 5 4 4 | 5
5
5
5
5 | 6 6 6 6 | | 70
71
72
73
74 | 8451
8513
8573
8633
8692 | 8457
8519
8579
8639
8698 | 8463
8525
8585
8645
8704 | 8470
8531
8591
8651
8710 | 8476
8537
8597
8657
8716 | 8482
8543
8603
8663
8722 | 8488
8549
8609
8669
8727 | 8494
8555
8615
8675
8733 | 8500
8561
8621
8681
8739 | 8506
8567
8627
8686
8745 | 1
1
1
1
1 | 1
1
1
1
1 | 2 2 2 2 2 | 2 2 2 2 2 | 3 3 3 3 3 | 4 4 4 4 | 44444 | 5
5
5
5
5 | 6
5
5
5
5 | | 75
76
77
78
79 | 8751
8808
8865
8921
8976 | 8756
8814
8871
8927
8982 | 8762
8820
8876
8932
8987 | 8768
8825
8882
8938
8993 | 8774
8831
8887
8943
8998 | 8779
8837
8893
8949
9004 | 8785
8842
8899
8954
9009 | 8791
8848
8904
8960
9015 | 8797
8854
8910
8965
9020 | 8802
8859
8915
8971
9025 | 1
1
1
1
1 | 1
1
1
1
1 | 22222 | 2 2 2 2 2 2 | 3 3 3 3 3 | 00 00 00 00 00 | 4 4 4 4 | 5
5
4
4
4 | 5 5 5 5 5 | | 80
81
82
83
84 | 9031
9085
9138
9191
9243 | 9036
9090
9143
9196
9248 | 9042
9096
9149
9201
9253 | 9047
9101
9154
9206
9258 | 9053
9106
9159
9212
9263 | 9058
9112
9165
9217
9269 | 9063
9117
9170
9222
9274 | 9069
9122
9175
9227
9279 | 9074
9128
9180
9232
9284 | 9079
9133
9186
9238
9289 | 1 1 1 1 1 1 | 1
1
1
1 | 01 01 01 01 01 | 2
2
2
2
2
2 | 3 3 3 3 3 | 3 3 3 3 | 1
4
4
4 | 4 4 4 4 | 5 5 5 5 5 | | 85
86
87
88
89 | 9294
9345
9395
9445
9494 | 9299
9350
9400
9450
9499 | 9304
9355
9405
9455
9504 | 9309
9360
9410
9460
9509 | 9315
9365
9415
9465
9513 | 9320
9370
9420
9469
9518 | 9325
9375
9425
9474
9523 | 9330
9380
9430
9479
9528 | 9335
9385
9435
9484
9533 | 9340
9390
9440
9489
9538 | 1
1
0
0
0 | 1
1
1
1
1 | 2
2
1
1
1 | 2 2 2 2 2 | 33222 | 3 3 3 3 3 | 4 4 3 3 3 | 4
4
4
4
4 | 5
5
4
4
4 | | 90
91
92
93
94 | 9542
9590
9638
9685
9731 | 9547
9595
9643
9689
9736 | 9552
9600
9647
9694
9741 | 9557
9605
9652
9699
9745 | 9562
9609
9657
9703
9750 | 9566
9614
9661
9708
9754 | 9571
9619
9666
9713
9759 | 9576
9624
9671
9717
9763 | 9581
9628
9675
9722
9768 | 9586
9633
9680
9727
9773 | 0 0 0 0 0 | 1
1
1
1
1 | 1
1
1
1
1 | 2
2
2
2
2
2 |
2
2
2
2
2 | 3 3 3 3 3 | 3 3 3 3 3 | 4 4 4 4 | 4 4 4 4 4 | | 95
96
97
98
99 | 9777
9823
9868
9912
9956 | 9782
9827
9872
9917
9961 | 9786
9832
9877
9921
9965 | 9791
9836
9881
9926
9969 | 9795
9841
9886
9930
9974 | 9800
9845
9890
9934
9978 | 9805
9850
9894
9939
9983 | 9809
9854
9899
9943
9987 | 9814
9859
9903
9948
9991 | 9818
9863
9908
9952
9996 | 0
0
0
0
0 | 1
1
1
1
1 | 1
1
1
1 | 2
2
2
2
2
2 | 2 2 2 2 2 2 | 3 3 3 3 2 2 | 3 3 3 3 3 | 4
4
4
3 | 4 4 4 4 4 | ### Antilogarithms. | | | | | | Α. | intil | ogai | 101111 | .15. | | | | | | | | | | | |---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|-----------------------|----------------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|-------------| | Log. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | ·00
·01
·02
·03
·04 | 1000
1023
1047
1072
1096 | 1002
1026
1050
1074
1099 | 1005
1028
1052
1076
1102 | 1007
1030
1054
1079
1104 | 1009
1033
1057
1081
1107 | 1012
1035
1059
1084
1109 | 1014
1038
1062
1086
1112 | 1016
1040
1064
1089
1114 | 1019
1042
1067
1091
1117 | 1021
1045
1069
1094
1119 | 0 0 0 0 | 0
0
0
0
1 | 1
1
1
1
1 | 1 1 1 1 1 1 | 1
1
1
1
1 | 1
1
1
1
2 | 2
2
2
2
2
2 | 2
2
2
2
2
2 | 2 2 2 2 2 2 | | .05
.06
.07
.08 | 1122
1148
1175
1202
1230 | 1125
1151
1178
1205
1233 | 1127
1153
1180
1208
1236 | 1130
1156
1183
1211
1239 | 1132
1159
1186
1213
1242 | 1135
1161
1189
1216
1245 | 1138
1164
1191
1219
1247 | 1140
1167
1194
1222
1250 | 1143
1169
1197
1225
1253 | 1146
1172
1199
1227
1256 | 0 0 0 0 | 1
1
1
1
1 | 1 1 1 1 1 1 | 1
1
1
1
1 | 1
1
1
1
1 | 2 2 2 2 2 | 2 2 2 2 2 2 | 22222 | 2 2 2 3 3 | | 10
11
12
13
14 | 1259
1288
1318
1349
1380 | 1262
1291
1321
1352
1384 | 1265
1294
1324
1355
1387 | 1268
1297
1327
1358
1390 | 1271
1300
1330
1361
1393 | 1274
1303
1334
1365
1396 | 1276
1306
1337
1368
1400 | 1279
1309
1340
1371
1403 | 1282
1312
1343
1374
1406 | 1285
1315
1346
1377
1409 | 0 0 0 0 0 | 1
1
1
1
1 | 1
1
1
1
1 | 1
1
1
1 | 1
2
2
2
2 | 2 2 2 2 2 | 22222 | 21 21 21 23 33 | 33333 | | ·15
·16
·17
·18
·19 | 1413
1445
1479
1514
1549 | 1416
1449
1483
1517
1552 | 1419
1452
1486
1521
1556 | 1422
1455
1489
1524
1560 | 1426
1459
1493
1528
1563 | 1429
1462
1496
1531
1567 | 1432
1466
1500
1535
1570 | 1435
1469
1503
1538
1574 | 1439
1472
1507
1542
1578 | 1442
1476
1510
1545
1581 | 0 0 0 0 0 | 1
1
1
1
1 | 1
1
1
1
1 | 1 1 1 1 1 1 | 2
2
2
2
2
2 | 2
2
2
2
2
2 | 2 2 2 2 3 | 3 3 3 3 3 | 0000000 | | ·20
·21
·22
·23
·24 | 1585
1622
1660
1698
1738 | 1589
1626
1663
1702
1742 | 1592
1629
1667
1706
1746 | 1596
1633
1671
1710
1750 | 1600
1637
1675
1714
1754 | 1603
1641
1679
1718
1758 | 1607
1644
1683
1722
1762 | 1611
1648
1687
1726
1766 | 1614
1652
1690
1730
1770 | 1618
1656
1694
1734
1774 | 00000 | 1
1
1
1
1 | 1
1
1
1
1 | 1 2 2 2 2 | 2
2
2
2
2
2 | 2
2
2
2
2
2
2 | 3 3 3 3 3 | 3 3 3 3 3 | 33344 | | ·25
·26
·27
·28
·29 | 1778
1820
1862
1905
1950 | 1782
1824
1866
1910
1954 | 1786
1828
1871
1914
1959 | 1791
1832
1875
1919
1963 | 1795
1837
1879
1923
1968 | 1799
1841
1884
1928
1972 | 1803
1845
1888
1932
1977 | 1807
1849
1892
1936
1982 | 1811
1854
1897
1941
1986 | 1816
1858
1901
1945
1991 | 0 0 0 0 0 | 1
1
1
1
1 | 1
1
1
1
1 | 2 2 2 2 2 2 | 2
2
2
2
2
2 | 22333333 | 3 3 3 3 | 3 3 4 4 | 4 4 4 4 | | ·30
·31
·32
·33
·34 | 1995
2042
2089
2138
2188 | 2000
2046
2094
2143
2193 | 2004
2051
2099
2148
2198 | 2009
2056
2104
2153
2203 | 2014
2061
2109
2158
2208 | 2018
2065
2113
2163
2213 | 2023
2070
2118
2168
2218 | 2028
2075
2123
2173
2223 | 2032
2080
2128
2178
2228 | 2037
2084
2133
2183
2234 | 0
0
0
0
0
1 | 1
1
1
1 | 1
1
1
1
2 | 2 2 2 2 2 2 | 2
2
2
2
3 | 3
3
3
3
3 | 3 3 3 4 | 4 4 4 4 4 | 4 4 4 5 | | ·35
·36
·37
·38
·39 | 2239
2291
2344
2399
2455 | 2244
2296
2350
2404
2460 | 2249
2301
2355
2410
2466 | 2254
2307
2360
2415
2472 | 2259
2312
2366
2421
2477 | 2265
2317
2371
2427
2483 | 2270
2323
2377
2432
2489 | 2275
2328
2382
2438
2495 | 2280
2333
2388
2443
2500 | 2286
2339
2393
2449
2506 | 1
1
1
1
1 | 1
1
1
1
1 | 2
2
2
2
2
2 | 2
2
2
2
2
2
2 | 3 3 3 3 3 | 3
3
3
3 | 4 4 4 4 4 | 4
4
4
4
5 | 555555 | | ·40
·41
·42
·43
·44 | 2512
2570
2630
2692
2754 | 2518
2576
2636
2698
2761 | 2528
2582
2642
2704
2767 | 2529
2588
2649
2710
2773 | 2535
2594
2655
2716
2780 | 2541
2600
2661
2728
2786 | 2547
2606
2667
2729
2793 | 2553
2612
2673
2735
2799 | 2559
2618
2679
2742
2805 | 2564
2624
2685
2748
2812 | 1 1 1 1 1 1 | 1
1
1
1
1 | 2
2
2
2
2
2 | 2
2
2
3
3 | 3 3 3 3 3 | 4
4
4
4
4 | 4 4 4 4 | 5 5 5 5 | 5 6 6 6 | | 45
46
47
48
49 | 2818
2884
2951
3020
3090 | 2825
2891
2958
3027
3097 | 2831
2897
2965
3034
3105 | 2838
2904
2972
3041
3112 | 2844
2911
2979
3048
3119 | 2851
2917
2985
3055
3126 | 2858
2924
2992
3062
3133 | 2864
2931
2999
3069
3141 | 2871
2938
3006
3076
3148 | 2877
2944
3013
3083
3155 | 1
1
1
1
1 | 1
1
1
1 | 2
2
2
2
2
2 | 3 3 3 3 3 | 3 3 4 4 | 4
4
4
4
4 | 5 5 5 5 5 | 5
5
5
6
6 | 1666 | # Antilogarithms. | Log. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |---------------------------------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|----------------------------|----------------------------|-----------------------|--------------------------|----------------------------|----------------------------------|---------------------------|---------------------------| | ·5(
·5:
·5:
·5: | 3162
3236
3311
3388 | 3170
3243
3319
3396
3475 | 3177
3251
3327
3404
3483 | 3184
3258
3334
3412
3491 | 3192
3266
3342
3420
3499 | 3199
3273
3350
3428
3508 | 3206
3281
3357
3436
3516 | 3214
3289
3365
3443
3524 | 3221
3296
3373
3451
3532 | 3228
3304
3381
3459
3540 | 1 1 1 1 1 1 | 1
2
2
2
2 | 2
2
2
2
2
2 | 3 3 3 3 3 | 4 4 4 4 | 4
5
5
5
5 | 5
5
5
6
6 | 6
6
6
6 | 7 7 7 7 7 7 | | .5
.5
.5 | 3631
3715
3802 | 3556
3639
3724
3811
3899 | 3565
3648
3733
3819
3908 | 3573
3656
3741
3828
3917 | 3581
3664
3750
3837
3926 | 3589
3673
3758
3846
3936 | 3597
3681
3767
3855
3945 | 3606
3690
3776
3864
3954 | 3614
3698
3784
3873
3963 | 3622
3707
3793
3882
3972 | 1 1 1 1 1 1 | 2
2
2
2
2
2 | 2
3
3
3
3 | 3 3 4 4 | 4
4
4
4
5 | 5
5
5
5
5
5 | 6
6
6
6
6 | 7
7
7
7 | 8 2 8 2 2 | | ·6(
·6:
·6:
·6: | 4074
4169
4266 | 3990
4083
4178
4276
4375 | 3999
4093
4188
4285
4385 | 4009
4102
4198
4295
4395 | 4018
4111
4207
4305
4406 | 4027
4121
4217
4315
4416 | 4036
4130
4227
4325
4426 | 4046
4140
4236
4335
4436 | 4055
4150
4246
4345
4446 | 4064
4159
4256
4355
4457 | 1 1 1 1 1 1 | 2
2
2
2
2
2 | 3 3 3 3 | 4
4
4
4 | 5
5
5
5
5 | 6
6
6
6
6 | 6 7 7 7 7 7 | 78888 | 89999 | | ·65 | 4571
4677
4786 | 4477
4581
4688
4797
4909 | 4487
4592
4699
4908
4920 |
4498
4603
4710
4819
4932 | 4508
4613
4721
4831
4943 | 4519
4624
4732
4842
4955 | 4529
4634
4742
4853
4966 | 4539
4645
4753
4864
4977 | 4550
4656
4764
4875
4989 | 4560
4667
4775
4887
5000 | 1 1 1 1 1 | 2
2
2
2
2
2 | 3 3 3 3 | 4
4
4
4
5 | 5
5
5
6
6 | 6
6
7
7
7 | 7788888 | 9 | 9
10
10
10
10 | | ·70
·73
·73
·73 | 5129
5248
5370 | 5023
5140
5260
5383
5508 | 5035
5152
5272
5395
5521 | 5047
5164
5284
5408
5534 | 5058
5176
5297
5420
5546 | 5070
5188
5309
5433
5559 | 5082
5200
5321
5445
5572 | 5093
5212
5333
5458
5585 | 5105
5224
5346
5470
5698 | 5117
5236
5358
5483
5610 | 1
1
1
1 | 2
2
2
3
3 | 4 4 4 4 | 5 5 5 5 5 | 6
6
6
6 | 7
7
8
8 | 9 | 9
10
10
10
10 | 11
11
11 | | ·75 | 5754
5888
6026 | 5636
5768
5902
6039
6180 | 5649
5781
5916
6053
6194 | 5662
5794
5929
6067
6209 | 5675
5808
5943
6081
6223 | 5689
5821
5957
6095
6237 | 5702
5834
5970
6109
6252 | 5715
5848
5984
6124
6266 | 5728
5861
5998
6138
6281 | 5741
5875
6012
6152
6295 | 1
1
1
1
1 | 3 3 3 3 3 | 4 4 4 4 4 | 5
5
6
6 | 7 7 7 7 7 7 7 | 88889 | | 11 | 12
12
13 | | -80
-81
-82
-83
-84 | 6457
6607
6761 | 6324
6471
6622
6776
6934 | 6339
6486
6637
6792
6950 | 6353
6501
6653
6808
6966 | 6368
6516
6668
6823
6982 | 6383
6531
6683
6839
6998 | 6397
6546
6699
6855
7015 | 6412
6561
6714
6871
7031 | 6427
6577
6730
6887
7047 | 6442
6592
6745
6902
7063 | 1 2 2 2 2 | 3
3
3
3
3 | 4
5
5
5
5 | 6
6
6
6 | 7 8 8 8 8 8 | 9
9
9
9 | 10
11
11
11
11 | 12
12
13 | 14
14
14 | | ·85
·86
·87
·88 | 7244
7413
7586 | 7096
7261
7430
7603
7780 | 7112
7278
7447
7621
7798 | 7129
7295
7464
7638
7816 | 7145
7311
7482
7656
7834 | 7161
7328
7499
7674
7852 | 7178
7345
7516
7691
7870 | 7194
7362
7534
7709
7889 | 7211
7379
7551
7727
7907 | 7228
7396
7568
7745
7925 | 2 2 2 2 2 | 3
3
4
4 | 5
5
5
5
5
5 | 7
7
7
7
7 | 9 : | 10
10
10
11
11 | 12
12
12
12
12
13 | 13 :
14
14 | 15
16
16 | | .90
.91
.93
.93 | 8128
8318
8511 | 7962
8147
8337
8531
8730 | 7980
8166
8356
8551
8750 | 7998
8185
8375
8570
8770 | 8017
8204
8395
8590
8790 | 8035
8222
8414
8610
8810 | 8054
8241
8433
8630
8831 | 8072
8260
8453
8650
8851 | 8091
8279
8472
8670
8872 | 8110
8299
8492
8690
8892 | 2 2 2 2 2 2 | 4 4 4 4 | 6
6
6
6 | 8 1 | 9
9
10
10
10 | 11
12
12 | 13
13
14
14
14 | 15 :
15 :
16 : | 17
17
18 | | .96 | 9120
9333
9550 | 8933
9141
9354
9572
9795 | 8954
9162
9376
9594
9817 | 8974
9183
9397
9616
9840 | 8995
9204
9419
9638
9863 | 9016
9226
9441
9661
9886 | 9036
9247
9462
9683
9908 | 9057
9268
9484
9705
9931 | 9078
9290
9506
9727
9954 | 9099
9311
9528
9750
9977 | 2 2 2 2 2 | 4 4 4 5 | 6
6
7
7
7 | 8 1
9 1
9 1 | | 13
13
13 | 15
15
15
16
16 | 17 :
17 :
18 : | 19
20
20 | | 95 | 9772 | 3795 | 9817 | 3840 | 9503 | 3000 | 3303 | 3991 | 3994 | 9911 | 2 | 9 | 4 | 9 1 | | 14 | 10. | 19.3 | :0 | ### Natural Sines. | ,— | | | | | | | | | | | _ | | - | | | |----------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|-----------------------|-----------------------|----------------------------------|----------------------------------| | Deg. | 0' | 6′
0°·1 | 12′
0°·2 | 18′
0°∙3 | 24′
0°·4 | 30′
0°·5 | 36′
0°∙6 | 42'
0°·7 | 48′
0°∙8 | 54′
0°·9 | | ean
2' | | ffere
4' | nces
5' | | 0
1
2
3
4 | 0000
0175
0349
0523
0698 | 0017
0192
0366
0541
0715 | 0035
0209
0384
0558
0732 | 0052
0227
0401
0576
0750 | 0070
0244
0419
0593
0767 | 0087
0262
0436
0610
0785 | 0105
0279
0454
0628
0802 | 0122
0297
0471
0645
0819 | 0140
0314
0488
0663
0837 | 0157
0332
0506
0680
0854 | 3 3 3 3 3 | 6
6
6
6 | 9 9 9 9 9 | 12
12
12
12
12
12 | 15
15
15
15
15
14 | | 5
6
7
8
9 | 0872
1045
1219
1392
1564 | 0889
1063
1236
1409
1582 | 0906
1080
1253
1426
1599 | 0924
1097
1271
1444
1616 | 0941
1115
1288
1461
1633 | 0958
1132
1305
1478
1650 | 0976
1149
1323
1495
1668 | 0993
1167
1340
1513
1685 | 1011
1184
1357
1530
1702 | 1028
1201
1374
1547
1719 | 3 3 3 3 3 | 6
6
6
6 | 9 9 9 9 | 12
12
12
12
12
12 | 14
14
14
14
14 | | 10
11
12
13
14 | 1736
1908
2079
2250
2419 | 1754
1925
2096
2267
2436 | 1771
1942
2113
2284
2453 | 1788
1959
2130
2300
2470 | 1805
1977
2147
2317
2487 | 1822
1994
2164
2334
2504 | 1840
2011
2181
2351
2521 | 1857
2028
2198
2368
2538 | 1874
2045
2215
2385
2554 | 1891
2062
2233
2402
2571 | 3 3 3 3 | 6
6
6
6 | 9
9
9
8
8 | 11
11
11
11
11 | 14
14
14
14
14 | | 15
16
17
18
19 | 2588
2756
2924
3090
3256 | 2605
2773
2940
3107
3272 | 2622
2790
2957
3123
3289 | 2639
2807
2974
3140
3305 | 2656
2823
2990
3156
3322 | 2672
2840
3007
3173
3338 | 2689
2857
3024
3190
2 355 | 2706
2874
3040
3206
3371 | 2723
2890
3057
3223
3387 | 2740
2907
3074
3239
3404 | 3 3 3 3 3 | 6
6
6
5 | 8 8 8 8 8 | 11
11
11
11
11 | 14
14
14
14
14 | | 20
21
22
23
24 | 3420
3584
3746
3907
4067 | 3437
3600
3762
3923
4083 | 3453
3616
3778
3939
4099 | 3469
3633
3795
3955
4115 | 3486
3649
3811
3971
4131 | 3502
3665
3827
3987
4147 | 3518
3681
3843
4003
4163 | 3535
3697
3859
4019
4179 | 3551
3714
3875
4035
4195 | 3567
3730
3891
4051
4210 | 3 3 3 3 3 | 5
5
5
5
5 | 88888 | 11
11
11
11 | 14
14
14
14
13 | | 25
26
27
28
29 | 4226
4384
4540
4695
4848 | 4242
4399
4555
4710
4863 | 4258
4415
4571
4726
4879 | 4274
4431
4586
4741
4894 | 4289
4446
4602
4756
4909 | 4305
4462
4617
4772
4924 | 4321
4478
4633
4787
4939 | 4337
4493
4648
4802
4955 | 4352
4509
4664
4818
4970 | 4368
4524
4679
4833
4985 | 3 3 3 3 3 | 5
5
5
5
5 | 88888 | 11
10
10
10
10 | 13
13
13
13
13 | | 30
31
32
33
34 | 5000
5150
5299
5446
5592 | 5015
5165
5314
5461
5606 | 5030
5180
5329
5476
5621 | 5045
5195
5344
5490
5635 | 5060
5210
5358
5505
5650 | 5075
5225
5373
5519
5664 | 5090
5240
5388
5534
5678 | 5105
5255
5402
5548
5693 | 5120
5270
5417
5563
5707 | 5135
5284
5432
5577
5721 | 3
3
2
2
2 | 5 5 5 5 | 8
7
7
7 | 10
10
10
10
10 | 13
12
12
12
12
12 | | 35
36
37
38
39 | 5736
5878
6018
6157
6293 | 5750
5892
6032
6170
6307 | 5764
5906
6046
6184
6320 | 5779
5920
6030
6198
6331 | 5793
5934
6074
6211
6347 | 5807
5948
6088
6225
6361 | 5821
5962
6101
6239
6374 | 5835
5976
6115
6252
6388 | 5850
5990
6129
6266
6401 | 5864
6004
6143
6280
6414 | 2 2 2 2 2 | 5 5 5 5 4 | 7, 7777 | 9 9 9 9 | 12
12
12
11
11 | | 40
41
42
43
44 | 6428,
6561
6691
6820
6947 | 6441
6574
6701
6833
6959 | 6455
6587
6717
6845
6972 | 6468
6600
6730
6858
6984 | 6481
6613
6743
6871
6997 | 6494
6626
6756
6884
7009 | 6508
6639
6769
6896
7022 | 6521
6652
6782
6909
7034 | 6534
6665
6794
6921
7046 | 6547
6678
6807
6934
7059 | 2
2
2
2
2 | 4 4 4 4 | 7
6
6
6 | 9 9 8 8 | 11
11
11
11
11 | ### Natural Sines. | - | | | | | | | - | | | | | | | | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------|----------------------------|-----------------------|-----------------------
----------------------------| | Deg. | 0′ | 6′
0°·1 | 12′
0°·2 | 18′
0°·3 | 24′
0°·4 | 30′
0°∙5 ⋅ | 36'
36' | 42'
0°·7 | 48′
0°⋅8 | 54′
0 > 9 | Mea
1′ 2 | | Dif | fere
4′ | nces
5' | | 45
46
47
48
49 | 7071
7193
7314
7431
7547 | 7083
7206
7325
7443
7558 | 7096
7218
7337
7455
7570 | 7108
7230
7349
7466
7581 | 7120
7242
7361
7478
7593 | 7133
7254
7373
7490
7604 | 7145
7266
7385
7501
7615 | 7157
7278
7396
7513
7627 | 7169
7290
7408
7524
7638 | 7181
7302
7420
7536
7649 | 2 2 | 1 | 6 6 6 6 6 | 22223 | 10
10
10
10
10 | | 50
51
52
53
54 | 7660
7771
7880
7986
8090 | 7672
7782
7891
7997
8100 | 7683
7793
7902
8007
8111 | 7694
7804
7912
8018
8121 | 7705
7815
7923
8028
8131 | 7716
7826
7934
8039
8141 | 7727
7837
7944
8049
8151 | 7738
7848
7955
8059
8161 | 7749
7859
7965
8070
8171 | 7760
7869
7976
8080
8181 | 2
2
2 | 4 4 3 3 | 6
5
5
5
5 | 7 7 7 | 9
9
9
9
8 | | 55
56
57
58
59 | 8192
8290
8387
8480
8572 | 8202
8300
8396
8490
8581 | 8211
8310
8406
8499
8590 | 8221
8320
8415
8508
8599 | 8231
8329
8425
8517
8607 | 8241
8339
8434
8526
8616 | 8251
8348
8443
8536
8625 | 8261
8358
8453
8545
8634 | 8271
8368
8462
8554
8643 | 8281
8377
8471
8563
8652 | 2 2 2 | 3 3 3 3 | 5 5 5 4 | 7
6
6
6
6 | 88887 | | 60
61
62
63
64 | 8660
8746
8829
8910
8988 | 8669
8755
8838
8918
8996 | 8678
8763
8846
8926
9003 | 8686
8771
8854
8934
9011 | 8695
8780
8862
8942
9018 | 8704
8788
8870
8949
9026 | 8712
8796
8878
8957
9033 | 8721
8805
8886
8965
9041 | 8729
8813
8894
8973
9048 | 8738
8921
8902
8980
9056 | 1 | 3 3 3 3 | 1 1 1 1 1 | 6
5
5
5
5 | 7-7-6 | | 65
66
67
68
69 | 9063
9135
9205
9272
9336 | 9070
9143
9212
9278
9342 | 9078
9150
9219
9285
9348 | 9085
9157
9225
9291
9354 | 9092
9164
9232
9298
9361 | 9100
9171
9239
9304
9367 | 9107
9178
9245
9311
9373 | 9114
9184
9252
9317
9379 | 9121
9191
9259
9323
9385 | 9128
9198
9265
9330
9391 | 1
1
1
1 | 22222 | 3 3 3 | 5
4
4
4 | 6
6
5
5 | | 70
71
72
73
74 | 9397
9455
9511
9563
9613 | 9403
9461
9516
9568
9617 | 9409
9466
9521
9573
9622 | 9415
9472
9527
9578
9627 | 9421
9478
9532
9583
9632 | 9426
9483
9537
9588
9636 | 9432
9489
9542
9593
9641 | 9438
9494
9548
9598
9646 | 9444
9500
9553
9603
9650 | 9449
9505
9558
9608
9655 | 1
1
1
1 | 2
2
2
2
2
2 | 33322 | 4 4 3 3 | 5
1
4
4 | | 75
76
77
78
79 | 9703
9744
9781 | 9664
9707
9748
9785
9820 | 9668
9711
9751
9789
9823 | 9673
9715
9755
9792
9826 | 9677
9720
9759
9796
9829 | 9681
9724
9763
9799
9833 | 9686
9728
9767
9803
9836 | 9690
9732
9770
9806
9839 | 9694
9736
9774
9810
9842 | 9699
9740
9778
9813
9845 | 1
1
1
1 | 1
1
1
1 | 2
2
2
2
2 | 3 3 2 2 | + 30 cm cm cm | | 80
81
82
83
84 | 9877
9903
9925 | 9851
9880
9905
9928
9947 | 9854
9882
9907
9930
9949 | 9857
9885
9910
9932
9951 | 9860
9888
9912
9934
9952 | 9863
9890
9914
9936
9951 | 9866
9893
9917
9938
9956 | 9869
9895
9919
9940
9957 | 9871
9898
9921
9942
9959 | 9874
9900
9923
9943
9960 | 0 0 0 0 0 | 1
1
1
1
1 | 1
1
1
1
1 | 2
2
2
1
1 | 2 2 2 2 2 2 2 | | 85
86
87
88
89 | 9976
9986
9994 | 9963
9977
9987
9995
9999 | 9965
9978
9988
9995
9999 | 9966
9979
9989
9996
9999 | 9968
9980
9990
9996
9999 | 9969
9981
9990
9997
9999 | 9971
9982
9991
9997
9999 | 9972
9983
9992
9997
9999 | 9973
9984
9993
9998
9999 | 9974
9985
9993
9998
9999 | 0 0 0 0 | 0
0
0
0
0 | 1
1
0
0
0 | 1
1
0
0 | 1
1
0
0 | ### Natural Cosines. | مَع | | 6' | 12' | 18' | 24' | 30′ | 36′ | 42' | 48' | 54 | 1 | | [ea: | n
nce | s | |----------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|----------------------------|-----------------------|-----------------------|---------------------------| | Deg. | 0′ | 0∘.1 | 0°·2 | 03 | 0°.4 | 0∘∙5 | 0ು.6 | 0>.7 | 0○.8 | 00 | | 2′ | | 4 | _ | | 0
1
2
3
4 | 1.000
9998
9994
9986
9976 | 9999
9998
9993
9985
9974 | 9999
9998
9993
9984
9973 | 9999
9997
9992
9983
3972 | 9999
9997
9991
9982
9971 | 9999
9997
9990
9981
9969 | 9999
9996
9990
9980
9968 | 9999
9996
9939
9979
9966 | 9999
9995
9988
9978
9965 | 9999
9995
9987
9977
9963 | 0 0 0 0 | 0
0
0
0
0 | 0 0 0 1 1 | 0
0
1
1
1 | 0
0
1
1
1 | | 5
6
7
8
9 | 9962
9945
9925
9903
9877 | 9960
9943
9923
9900
9874 | 9959
9942
9921
9898
9871 | 9957
9940
9919
9895
9869 | 9956
9938
9917
9893
9866 | 9954
9936
9914
9890
9863 | 9952
9934
9912
9888
9860 | 9951
9932
9910
9885
9857 | 9949
9930
9907
9882
9854 | 9947
9928
9905
9880
9851 | 0 0 0 0 0 | 1
1
1
1
1 | 1 1 1 1 1 1 | 1
1
2
2
2 | 2
2
2
2
2 | | 10
11
12
13
14 | 9848
9816
9781
9744
9703 | 9845
9813
9778
9740
9699 | 9842
9810
9774
9736
9694 | 9839
9806
9770
9732
9690 | 9836
9803
9767
9728
9686 | 9833
9799
9763
9724
9681 | 9829
9796
9759
9720
9677 | 9826
9792
9755
9715
9673 | 9823
9789
9751
9711
9668 | 9820
9785
9748
9707
9664 | 1
1
1
1 | 1
1
1
1
1 | 2 2 2 2 2 | 2 3 3 3 | 3 3 3 4 | | 15
16
17
18
19 | 9659
9613
9563
9511
9455 | 9655
9608
9558
9505
9449 | 9650
9603
9553
9500
9444 | 9646
9508
9548
9494
9438 | 9641
9593
9542
9489
9432 | 9636
9588
9537
9483
9426 | 9632
9583
9532
9478
9421 | 9627
9578
9527
9472
9415 | 9622
9573
9521
9466
9409 | 9617
9568
9516
9461
9403 | 1
1
1
1
1 | 2 2 2 2 2 | 2 3 3 3 | 3 3 4 4 | 4 1 5 5 5 5 | | 20
21
22
23
24 | 9397
9336
9272
9205
9135 | 9391
9330
9265
9198
9128 | 9385
9323
9259
9191
9121 | 9379
9317
9252
9184
9114 | 9373
9311
9245
9178
9107 | 9367
9304
9239
9179
9100 | 9361
9298
9232
9164
9092 | 9354
9291
9225
9157
9085 | 9348
9285
9219
9150
9078 | 9342
9278
9212
9143
9070 | 1 1 1 1 1 | 2
2
2
2
2
2 | 3
3
3
4 | 4 4 5 5 | 5
6
6
6 | | 25
26
27
28
29 | 9063
8988
8910
8829
8746 | 9056
8980
8902
8821
8738 | 9048
8973
8894
8813
8729 | 9041
8965
8886
8805
8721 | 9033
8957
8878
8796
8712 | 9026
8949
8870
8788
8704 | 9018
8942
8862
8780
8695 | 9011
8934
8854
8771
8686 | 9003
8926
8846
8763
8678 | 8996
8918
8838
8755
8669 | 1
1
1
1
1 | 3 3 3 3 | 4
4
4
4 | 5 5 6 6 | 6
6
7
7
7 | | 30
31
32
33
34 | 8660
8572
8480
8387
8290 | 8652
8563
8471
8377
8281 | 8643
8554
8462
8368
8271 | 8634
8545
8453
8358
8261 | \$625
8536
8143
8348
\$251 | 8616
8526
8434
8339
8241 | 8607
8517
8425
8329
8231 | 8599
8508
8415
8320
8221 | 8590
8499
8406
8310
8211 | 8581
8490
8396
8300
8202 | 1
2
2
2
2 | 3 3 3 3 | 4
5
5
5
5 | 6 6 6 7 | 8 8 8 | | 35
36
37
38
39 | 8192
8090
7986
7880
7771 | 8181
8080
7976
7869
7760 | 8171
8070
7965
7859
7749 | 8161
8059
7955
7848
7738 | 8151
8049
7944
7837
7727 | 8141
8039
7934
7826
7716 | 8131
8028
7923
7815
7705 | 8121
8018
7912
7804
7694 | 8111
8007
7902
7793
7683 | 8100
7997
7891
7782
7672 | 2 2 2 2 2 | 3
3
4
4
4 | 5
5
5
6 | 7
7
7
7
7 | 8
9
9
9 | | 40
41
42
43
44 | 7660
7547
7431
7314
7193 | 7649
7536
7420
7302
7181 | 7638
7524
7408
7290
7169 | 7627
7513
7396
7278
7157 | 7615
7501
7385
7266
7145 | 7604
7490
7373
7254
7133 | 7593
7478
7361
7242
7120 | 7581
7466
7349
7230
7108 | 7570
7455
7337
7218
7096 | 7559
7443
7325
7206
7083 | 2
2
2
2
2
2
2 | 4
4
4
4 | 6
6
6
6 | 8 | 9
10
10
10
10 | ###
Natural Cosines. | Deg. | 0′ | 6' | 12' | 18′ | 24 | 30′ | 36′ | 42' | 48 | 54' | | | Diff | | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------|----------------------------|-----------------------|----------------------------------|----------------------------------| | D | | 00.1 | 0∘.2 | 00.3 | 00.4 | 0°∙5 | 0∘.6 | 0°.7 | 08 | 0:-9 | 1' | 2' | 3, | 4' | 5′ | | 45
46
47
48
49 | 7071
6947
6820
6691
6561 | 7059
6934
6807
6678
6547 | 7046
6921
6794
6665
6534 | 7034
6909
6782
6652
6521 | 7022
6896
6769
6639
6508 | 7009
6884
6756
6626
6494 | 6997
6871
6743
6613
6481 | 6984
6858
6730
6600
6468 | 6972
6845
6717
6587
6455 | 6959
6833
6704
6574
6441 | 2 2 2 2 2 | 4 4 4 4 | 6
6
7
7 | 8
9
9
9 | 10
11
11
11
11 | | 50
51
52
53
54 | 6428
6293
6157
6018
5878 | 6414
6280
6143
6004
5864 | 6401
6266
6129
5990
5850 | 6388
6252
6115
5976
5835 | 6374
6239
6101
5962
5821 | 6361
6225
6088
5948
5807 | 6347
6211
6074
5934
5793 | 6334
6198
6060
5920
5779 | 6320
6184
6046
5906
5764 | 6307
6170
6032
5892
5750 | 2
2
2
2
2 | 4
5
5
5
5
5 | 7
7
7
7 | 9 9 9 | 11
11
12
12
12 | | 55
56
57
58
59 | 5736
5592
5446
5299
5150 | 5721
5577
5432
5284
5135 | 5707
5563
5417
5270
5120 | 5693
5548
5402
5255
5105 | 5678
5534
5388
5240
5090 | 5664
5519
5373
5225
5075 | 5650
5505
5358
5210
5060 | 5635
5490
5344
5195
5045 | 5621
5476
5329
5180
5030 | 5606
5461
5314
5165
5015 | 2 2 2 3 | 5
5
5
5
5 | 7
7
7
7
8 | 10
10
10
10
10 | 12
12
12
12
12
13 | | 60
61
62
63
64 | 5000
4848
4695
4540
4384 | 4985
4833
4679
4524
4368 | 4970
4818
4664
4509
4352 | 4955
4802
4648
4493
4337 | 4939
4787
4633
4478
4321 | 4924
4772
4617
4462
4305 | 4909
4756
4602
4446
4289 | 4894
4741
4586
4431
4274 | 4879
4726
4571
4415
4258 | 4863
4710
4555
4399
4242 | 3 3 3 3 3 | 5 5 5 5 5 | 200000 | 10
10
10
10
10 | 13
13
13
13
13 | | 65
66
67
68
69 | 4226
4067
3907
3746
3584 | 4210
4051
3891
3730
3567 | 4195
4035
3875
3714
3551 | 4179
4019
3859
3697
3535 | 4163
4003
3843
3681
3518 | 4147
3987
3827
3665
3502 | 4131
3971
3811
3649
3486 | 4115
3955
3795
3633
3469 | 4099
3939
3778
3616
3453 | 4083
3923
3762
3600
3437 | 3 3 3 3 3 | 5 5 5 5 | 8 8 8 8 | 11
11
11
11
11 | 13
14
14
14
14 | | 70
71
72
73
74 | 3420
3256
3090
2924
2756 | 3404
3239
3074
2907
2740 | 3387
3223
3057
2890
2723 | 3371
3206
3040
2874
2706 | 3355
3190
3024
2857
2689 | 3338
3173
3007
2840
2672 | 3322
3156
2990
2823
2656 | 3305
3140
2974
2807
2639 | 3289
3123
2957
2790
2622 | 3272
3107
2940
2773
2605 | 3 3 3 3 3 | 5
6
6
6
6 | 88888 | 11
11
11
11
11 | 14
14
14
14
14 | | 75
76
77
78
79 | 2588
2419
2250
2079
1908 | 2571
2402
2233
2062
1891 | 2554
2385
2215
2045
1874 | 2538
2368
2198
2028
1857 | 2521
2351
2181
2011
1840 | 2504
2334
2164
1994
1822 | 2487
2317
2147
1977
1805 | 2470
2300
2130
1959
1788 | 2453
2284
2113
1942
1771 | 2436
2267
2096
1925
1754 | 3 3 3 3 3 | 6
6
6
6 | 8
8
9
9 | 11
11
11
11
11 | 14
14
14
14
14 | | 80
81
82
83
84 | 1736
1564
1392
1219
1045 | 1719
1547
1374
1201
1028 | 1702
1530
1357
1184
1011 | 1685
1513
1340
1167
0993 | 1668,
1495
1323
1149
0976 | 1650
1478
1305
1132
0958 | 1633
1461
1288
1115
0941 | 1616
1444
1271
1097
0924 | 1599
1426
1253
1080
0906 | 1582
1409
1236
1063
0889 | 32,33,33,33,33 | 6
6
6
6 | 9
9
9
9 | 12
12
12
12
12
12 | 14
14
14
14
14 | | 85
86
87
88
89 | 0872
0698
0523
0349
0175 | 0854
0680
0506
0332
0157 | 0837
0663
0488
0314
0140 | 0819
0645
0471
0297
0122 | 0802
0628
0454
0279
0105 | 0785
0610
0436
0262
0087 | 0767
0593
0419
0244
0070 | 0750
0576
0401
0227
0052 | 0732
0558
0384
0209
0035 | 0715
0541
0366
0192
0017 | 3 3 3 3 3 | 6
6
6
6 | 9
9
9
9 | 12
12
12
12
12
12 | 15
15
15
15
15 | ## Natural Tangents. | Deg. | 0, | 6′ | 12' | 18' | 24' | 30 | 36′ | 42' | 48′ | 54' | | | Diffe | | | |----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------| | Ğ | | 00.1 | 0°·2 | 00.3 | 0°.4 | 00.2 | 0°.6 | 00.7 | 00.8 | 00.9 | 1' | 2′ | 3′ | 4′ | 5′ | | 0
1
2
3
4 | 0000
0175
0349
0524
0699 | 0017
0192
0367
0542
0717 | 0035
0209
0384
0559
0734 | 0052
0227
0402
0577
0752 | 0070
0244
0419
0594
0769 | 0087
0262
0437
0612
0787 | 0105
0279
0454
0629
0805 | 0122
0297
0472
0647
0822 | 0140
0314
0489
0664
0840 | 0157
0332
0507
0682
0857 | 3 3 3 3 | 6
6
6
6 | 9
9
9
9 | 12
12
12
12
12
12 | 15
15
15
15
15
15 | | 56789 | 0875
1051
1228
1405
1584 | 0892
1069
1246
1423
1602 | 0910
1086
1263
1441
1620 | 0928
1104
1281
1459
1638 | 0945
1122
1299
1477
1655 | 0963
1139
1317
1495
1673 | 0981
1157
1334
1512
1691 | 0998
1175
1352
1530
1709 | 1016
1192
1370
1548
1727 | 1033
1210
1388
1566
1745 | 3 3 3 3 | 6
6
6
6 | 9
9
9
9 | 12
12
12
12
12
12 | 15
15
15
15
15 | | 10
11
12
13
14 | 1763
1944
2126
2309
2493 | 1781
1962
2144
2327
2512 | 1799
1980
2162
2345
2530 | 1817
1998
2180
2364
2549 | 1835
2016
2199
2382
2568 | 1853
2035
2217
2401
2586 | 1871
2053
2235
2419
2605 | 1890
2071
2254
2438
2623 | 1908
2089
2272
2456
2642 | 1926
2107
2290
2475
2661 | 3 3 3 3 3 | 6
6
6
6 | 9
9
9
9 | 12
12
12
12
12
12 | 15
15
15
15
16 | | 15
16
17
18
19 | 2679
2867
3057
3249
3443 | 2698
2886
3076
3269
3463 | 2717
2905
3096
3288
3482 | 2736
2924
3115
3307
3502 | 2754
2943
3134
3327
3522 | 2773
2962
3153
3346
3541 | 2792
2981
3172
3365
3561 | 2811
3000
3191
3385
3581 | 2830
3019
3211
3404
3600 | 2849
3038
3230
3424
3620 | 3 3 3 3 | 6
6
6
6
6 | 9
9
10
10
10 | 13
13
13
13
13 | 16
16
16
16 | | 20
21
22
23
24 | 3640
3839
4040
4245
4452 | 3659
3859
4061
4265
4473 | 3679
3879
4081
4286
4494 | 3699
3899
4101
4307
4515 | 3719
3919
4122
4327
4536 | 3739
3939
4142
4348
4557 | 3759
3959
4163
4369
4578 | 3779
3979
4183
4390
4599 | 3799
4000
4204
4411
4621 | 3819
4020
4224
4431
4642 | 3 3 3 4 | 77777 | 10
10
10
10
11 | 13
13
14
14
14
14 | 17
17
17
17
17
18 | | 25
26
27
28
29 | 4663
4877
5095
5317
5543 | 4684
4899
5117
5340
5566 | 4706
4921
5139
5362
5589 | 4727
4942
5161
5384
5612 | 4748
4964
5184
5407
5635 | 4770
4986
5206
5430
5658 | 4791
5008
5228
5452,
5681 | 4813
5029
5250
5475
5704 | 4834
5051
5272
5498
5727 | 4856
5073
5295
5520
5750 | 4 4 4 4 4 4 | 77788 | 11
11
11
11
12 | 14
15
15
15
15 | 18
18
18
19
19 | | 30
31
32
33
34 | 5774
6009
6219
6494
6745 | 5797
6032
6273
6519
6771 | 5820
6056
6297
6544
6796 | 5844
6080
6322
6569
6822 | 5867
6104
6346
6594
6847 | 5890
6128
6371
6619
6873 | 5914
6152
6395
6644
6899 | 5938
6176
6420
6669
6924 | 5961
6200
6445
6694
6950 | 5985
6224
6469
6720
6976 | 4 4 4 4 | 8 8 8 9 | 12
12
12
13
13 | 16
16
16
17
17 | 20
20
20
21
21 | |
35
36
37
38
39 | 7002
7265
7536
7813
8098 | 7028
7292
7563
7841
8127 | 7054
7319
7590
7869
8156 | 7080
7346
7618
7898
8185 | 7107
7373
7646
7926
8214 | 7133
7400
7673
7954
8243 | 7159
7427
7701
7983
8273 | 7186
7454
7729
8012
8302 | 7212
7481
7757
8040
8332 | 7239
7508
7785
8069
8361 | 4
5
5
5
5
5 | 9
9
9
9
10 | 13
14
14
14
14
15 | 18
18
18
19
20 | 22
23
23
24
24
24 | | 40
41
42
43
44 | 8391
8693
9004
9325
2657 | 8421
8724
9036
9358
9691 | 8451
8754
9067
9391
9725 | 8481
8785
9099
9424
9759 | 8511
8816
9131
9457
9793 | 8541
8847
9163
9490
9827 | 8571
8878
9195
9523
9861 | 8601
8910
9228
9556
9896 | 8632
8941
9260
9590
9930 | 8662
8972
9293
9623
9965 | 5
5
5
6
6 | 10
10
11
11
11 | 15
16
16
17
17 | 20
21
21
22
23 | 25
26
27
28
29 | ## Natural Tangents. | Deg. | 0. | 6′
0°·1 | 12'
0°·2 | 18′
0°·3 | 24'
0°·4 | 30′
0°·5 | 36′
0°·6 | 42'
0°·7 | 48′
0°·8 | 54′
0°·9 | M
1' | ean
2 ' | Diffe | erene | es 5 ′ | |----------------------------|--|---|---|---|---|---|---|---|---|---|----------------------------|---|--|----------------------------|----------------------------| | 45
46
47
48
49 | 1.0000
1.0355
1.0724
1.1106
1.1504 | 0035
0392
0761
1145
1544 | 0070
0428
0799
1184
1585 | 0105
0464
0837
1224
1626 | 0141
0501
0875
1263
1667 | 0176
0538
0913
1303
1708 | 0212
0575
0951
1343
1750 | 0247
0612
0990
1383
1792 | 0283
0649
1028
1423
1833 | 0319
0686
1067
1463
1875 | 6
6
7
7 | 12
12
13
13
14 | 18
18
19
20
21 | 24
25
25
27
28 | 30
31
32
33
34 | | 50
51
52
53
54 | 1·1918
1·2349
1·2799
1·3270
1·3764 | 1960
2393
2846
3319
3814 | 2002
2437
2892
3367
3865 | 2045
2482
2938
3416
3916 | 2088
2527
2985
3465
3968 | 2131
2572
3032
3514
4019 | 2174
2617
3079
3564
4071 | 2218
2662
3127
3613
4124 | 2261
2708
3175
3663
4176 | 2305
2753
3222
3713
4229 | 7
8
8
8
9 | 14
15
16
16
17 | 22
23
24
25
26 | 29
30
31
33
34 | 36
38
39
41
13 | | 55
56
57
58
59 | 1·4281
1·4826
1·5399
1·6003
1·6643 | 4335
4882
5458
6066
6709 | 4388
4938
5517
6128
6775 | 4442
4994
5577
6191
6842 | 4496
5051
5637
6255
6909 | 4550
5108
5697
6319
6977 | 4605
5166
5757
6383
7045 | 4659
5224
5818
6447
7113 | 4715
5282
5880
6512
7182 | 4770
5340
5941
6577
7251 | 9
10
10
11
11 | 18
19
20
21
23 | 27
29
30
32
34 | 36
38
40
43
45 | 45
48
50
53
56 | | 60
61
62
63
64 | 1.7321
1.8040
1.8807
1.9626
2.0503 | 7391
8115
8887
9711
0594 | 7461
8190
8967
9797
0686 | 7532
8265
9047
9883
0778 | 7603
8341
9128
9970
0872 | 7675
8418
9210
0057
0965 | 7747
8495
9292
0145
1060 | 7820
8572
9375
0233
1155 | 7893
8650
9458
0323
1251 | 7966
8728
9542
0413
1348 | 12
13
14
15
16 | 24
26
27
29
31 | 36
38
41
44
47 | 48
51
55
58
63 | 60
64
68
73
78 | | 65
66
67
68
69 | 2·1445
2·2460
2·3559
2·4751
2·6051 | 1543
2566
3673
4876
6187 | 1642
2673
3789
5002
6325 | 1742
2781
3906
5129
6464 | 1842
2889
4023
5257
6605 | 1943
2998
4142
5386
6746 | 2045
3109
4262
5517
6889 | 2148
3220
4383
5649
7034 | 2251
3332
4504
5782
7179 | 2355
3445
4627
5916
7326 | 17 | nnot 18 | idity 12 | 68 | 85 | | 70
71
72
73
74 | 2·7475
2·9042
3·0777
3·2709
3·4874 | 7625
9208
0961
2914
5105 | 7776
9375
1146
3122
5339 | 7929
9544
1334
3332
5576 | 8083
9714
1524
3544
5816 | 8239
9887
1716
3759
6059 | 8397
0061
1910
3977
6305 | 8556
0237
2106
4197
6554 | 8716
0415
2305
4420
6806 | 8878
0595
2506
4646
7062 | | Mean Differences are not given here because they cannot | be used so as to secure sufficient accuracy, owing to the rapidity of change in the tangent as the angle increases. It is sufer to | Art. 197A. | | | 75
76
77
78
79 | 3·7321
4·0108
4·3315
4·7046
5·1446 | 7583
0408
3662
7453
1929 | 7848
0713
4015
7867
2422 | 8118
1022
4374
8288
2924 | 8391
1335
4737
8716
3435 | 8667
1653
5107
9152
3955 | 8947
1976
5483
9594
4486 | 9232
2303
5864
0045
5026 | 9520
2635
6252
0504
5578 | 9812
2972
6646
0970
6140 | | given here b | ent accuracy, o | Compute Note to Art. | | | 80
81
32
83
84 | 5·6713
6·3138
7·1154
8·1443
9·5144 | 7297
3859
2066
2636
9*677 | 7894
4596
3002
3863
9*845 | 8502
5350
3962
5126
10.02 | 9124
6122
4947
6427
10°20 | 9758
6912
5958
7769
10°39 | 0405
7720
6996
9152
10°58 | 1066
8548
8062
0579
10°78 | 1742
9395
9158
2052
10.99 | 2432
0264
0285
3572
11°20 | | rences are not | be used so as to secure sufficient accuracy, owing
of change in the fangent as the angle increases. | nal Parts. Con | | | 85
86
87
88
89 | 11:43
14:30
19:08
28:64
57:29 | 11°66
14°67
19°74
30°14
63°66 | 11.91
15.06
20.45
31.82
71.62 | 12°16
15°46
21°20
33°69
81°85 | 12:43
15:89
22:02
35:80
95:49 | 12:71
16:35
22:90
38:19
114:6 | 13.00
16.83
23.86
40.92
143.2 | 13:30
17:34
24:90
44:07
191:0 | 13.62
17.89
26.03
47.74
286.5 | 13.95
18.46
27.27
52.08
573.0 | | Mean Differ | be used so as t | use Proportional Parts. | | ## Logarithmic Sines. | Deg. | 0′ | 6′
0°·1 | 12′
0°·2 | 18'
0°·3 | 24'
0°·4 | 30′
0°∙5 | 0°∙6 | 42′
0°·7 | 48′
0°·8 | 54′
0°·9 | Mean Di
1' 2' 3' | fferences 4' 5' | |----------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---| | 0
1
2
3
4 | 8:2419
8:5428
8:7188
8:8436 | 7*2419
2832
5640
7330
8543 | 5429
3210
5842
7468
8647 | 7190
3558
6035
7602
8749 | 8439
3880
6220
7731
8849 | 9408
4179
6397
7857
8946 | 0200
4459
6567
7979
9042 | 0870
4723
6731
8098
9135 | 1450
4971
6889
8213
9226 | 1961
5206
7041
8326
9315 | 21 42 62
16 32 48 | 84 104
64 80 | | 5
6
7
8
9 | 8·9403
9·0192
9·0859
9·1436
9·1943 | 9489
0264
0920
1489
1991 | 9573
0334
0981
1542
2038 | 9655
0403
1040
1594
2085 | 9736
0472
1099
1646
2131 | 9816
0539
1157
1697
2176 | 9894
0605
1214
1747
2221 | 9970
0670
1271
1797
2266 | 0046
0734
1326
1847
2310 | 0120
0797
1381
1895
2353 | 13 26 39
11 22 33
10 19 29
8 17 25
8 15 23 | 52 65
44 55
38 48
34 42
30 38 | | 10
11
12
13
14 | 9°2397
9°2806
9°3179
9°3521
9°3837 | 2439
2845
3214
3554
3867 | 2482
2883
3250
3586
3897 | 2524
2921
3284
3618
3927 | 2565
2959
3319
3650
3957 | 2606
2997
3353
3682
3986 | 2647
3034
3387
3713
4015 | 2687
3070
3421
3745
4044 | 2727
3107
3455
3775
4073 | 2767
3143
3488
3806
4102 | 7 14 20
6 12 19
6 11 17
5 11 16
5 10 15 | 27 34
25 31
23 28
21 26
20 24 | | 15
16
17
18
19 | 9:4130
9:4403
9:4659
9:4900
9:5126 | 4158
4430
4684
4923
5148 | 4186
4456
4709
4946
5170 | 4214
4482
4733
4969
5192 | 4242
4508
4757
4992
5213 | 4269
4533
4781
5015
5235 | 4296
4559
4805
5037
5256 | 4323
4584
4829
5060
5278 | 4350
4609
4853
5082
5299 | 4377
4634
4876
5104
5320 | 5 9 14
4 9 13
4 8 12
4 8 11
4 7 11 | 18 23
17 21
16 20
15 19
14 18 | | 20
21
22
23
24 | 9·5341
9·5543
9·5736
9·5919
9·6093 |
5361
5563
5754
5937
6110 | 5382
5583
5773
5954
6127 | 5402
5602
5792
5972
6144 | 5423
5621
5810
5990
6161 | 5443
5641
5828
6007.
6177 | 5463
5660
5847
6024
6194 | 5484
5679
5865
6042
6210 | 5504
5698
5883
6059
6227 | 5523
5717
5901
6076
6243 | 3 7 10
3 6 10
3 6 9
3 6 9
3 6 8 | 14 17
18 16
12 15
12 15
11 14 | | 25
26
27
28
29 | 9·6259
9·6418
9·6570
9·6716
9·6856 | 6276
6434
6585
6730
6869 | 6292
6449
6600
6744
6883 | 6308
6465
6615
6759
6896 | 6324
6480
6629
6773
6910 | 6340
6495
6644
6787
6923 | 6356
6510
6659
6801
6937 | 6371
6526
6673
6814
6950 | 6387
6541
6687
6828
6963 | 6403
6556
6702
6842
6977 | 3 5 8
3 5 8
2 5 7
2 5 7
2 4 7 | 11 13 1
10 13 1
10 12 9 12 9 11 | | 30
31
32
33
34 | 9:6990
9:7118
9:7242
9:7361
9:7476 | 7003
7131
7254
7373
7487 | 7016
7144
7266
7384
7498 | 7029
7156
7278
7396
7509 | 7042
7168
7290
7407
7520 | 7055
7181
7302
7419
7531 | 7068
7193
7314
7430
7542 | 7080
7205
7326
7442
7553 | 7093
7218
7338
7453
7564 | 7106
7230
7349
7454
7575 | 2 4 6
2 4 6
2 4 6
2 4 6
2 4 6
2 4 6 | 9 11
8 10
8 10
8 10
7 9 | | 35
36
37
38
39 | 9:7586
9:7692
9:7795
9:7893
9:7989 | 7597
7703
7805
7903
7998 | 7607
7713
7815
7913
8007 | 7618
7723
7825
7922
8017 | 7629
7734
7835
7932
8026 | 7640
7744
7844
7941
8035 | 7650
7754
7854
7951
8044 | 7661
7764
7864
7960
8053 | 7671
7774
7874
7970
8063 | 7682
7785
7884
7979
8072 | 2 4 5
2 8 5
2 3 5
2 3 5
2 3 5
2 3 5 | 7 9 7 8 6 8 6 8 | | 40
41
42
43
44 | 9:8081
9:8169
9:8255
9:8338
9:8418 | 8090
8178
8264
8346
8426 | 8099
8187
8272
8354
8433 | 8108
8195
8280
8362
8441 | 8117
8204
8289
8370
8449 | 8125
8213
8297
8378
8457 | 8134
8221
8305
8386
8464 | 8143
8230
8313
8394
8472 | 8152
8238
8322
8402
8480 | 8161
8247
8330
8410
8487 | 1 3 4
1 3 4
1 3 4
1 3 4
1 3 4 | 6 7 6 7 5 7 5 6 | ## Logarithmic Sines. | | | | | | | | | | | | 1 | | | | |----------------------------|--|--------------------------------------|--------------------------------------|---|---|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|-----------------------|------------------|----------------------------| | Deg. | 0, | 6°
0°·1 | 12′
0°·2 | 0°.3 | 24'
0°•4 | 0°⋅5 | 0°.6 | 42'
0°·7 | 48′
0°·8 | 54′
0°·9 | Mean
1' 2' | 3' | ffere
4' | nces
5' | | 45
46
47
48
49 | 9:8495
9:8569
9:8641
9:8711
9:8778 | 8502
8577
8648
8718
8784 | 8510
8584
8655
8724
8791 | 8517
8591
8662
8731
8797 | 8525
8598
8669
8738
8804 | \$532
8606
8676
8745
8810 | 8540
8613
8683
8751
8817 | 8547
8620
8690
8758
8823 | 8555
8627
8697
8765
8830 | 8562
8634
8704
8771
8836 | 1 2
1 2
1 2
1 2
1 2 | 4 3 3 3 | 5
5
4
4 | 6
6
6
5 | | 50
51
52
53
54 | 9·8843
9·8905
9·8965
9·9023
9·9080 | 8849
8911
8971
9029
9085 | 8855
8917
8977
9035
9091 | \$862
\$923
\$983
\$9041
9096 | \$868
\$929
\$989
9046
9101 | 8874
8935
8995
9052
9107 | 8880
8941
9000
9057
9112 | 8887
8947
9006
9063
9118 | 8893
8953
9012
9069
9123 | 8899
8959
9018
9074
9128 | 1 2
1 2
1 2
1 2
1 2 | 3
3
3
3 | 4 4 4 | 1010101010 | | 55
56
57
58
59 | 9·9134
9·9186
9·9236
9·9284
9·9331 | 9139
9191
9241
9289
9335 | 9144
9196
9246
9294
9340 | 9149
9201
9251
9298
9344 | 9155
9206
9255
9303
9349 | 9160
9211
9260
9308
9353 | 9165
9216
9265
9312
9358 | 9170
9221
9270
9317
9362 | 9175
9226
9275
9322
9367 | 9181
9231
9279
9326
9371 | 1 2
1 2
1 2
1 2
1 1 | 3 3 2 2 2 2 | 3 3 3 3 | 1 1 1 1 | | 60
61
62
63
64 | 9·9375
9·9418
9·9459
9·9499
9·9537 | 9380
9422
9463
9503
9540 | 9384
9427
9467
9507
9544 | 9388
9431
9471
9510
9548 | 9393
9435
9475
9514
9551 | 9397
9439
9479
9518
9555 | 9401
9443
9483
9522
9558 | 9406
9447
9487
9525
9562 | 9410
9451
9491
9529
9566 | 9414
9455
9495
9533
9569 | 1 1
1 1
1 1
1 1
1 1 | 2 2 2 2 | 3 3 3 2 | 4 3 3 3 3 | | 65
66
67
68
69 | 9·9573
9·9607
9·9640
9·9672
9·9702 | 9576
9611
9643
9675
9704 | 9580
9614
9647
9678
9707 | 9583
9617
9650
9681
9710 | 9587
9621
9653
9684
9713 | 9590
9624
9656
9687
9716 | 9594
9627
9659
9690
9719 | 9597
9631
9662
9693
9722 | 9601
9634
9666
9696
9724 | 9604
9637
9669
9699
9727 | 1 1
1 1
1 1
0 1
0 1 | 2 2 1 1 | 21 21 21 21 21 | 00 00 00 01 01 | | 70
71
72
73
74 | 9·9730
9·9757
9·9782
9·9806
9·9828 | 9733
9759
9785
9808
9831 | 9735
9762
9787
9811
9833 | 9738
9764
9789
9813
9835 | 9741
9767
9792
9815
9837 | 9743
9770
9794
9817
9839 | 9746
9772
9797
9820
9841 | 9749
9775
9799
9822
9843 | 9751
9777
9801
9824
9845 | 9754
9780
9804
9826
9847 | 0 1
0 1
0 1
0 1
0 1 | 1
1
1
1 | 2 2 2 1 | 2
2
2
2
2
2 | | 75
76
77
78
79 | 9·9849
9·9869
9·9887
9·9904
9·9919 | 9851
9871
9889
9906
9921 | 9853
9873
9891
9907
9922 | 9855
9875
9892
9909
9924 | 9857
9876
9894
9910
9925 | 9859
9878
9896
9912
9927 | 9861
9880
9897
9913
9928 | 9863
9882
9899
9915
9929 | 9865
9884
9901
9916
9931 | 9867
9885
9902
9918
9932 | 0 1
0 1
0 1
0 1
0 0 | 1
1
1
1
1 | 1 1 1 1 1 | 2
2
1
1
1 | | 80
81
82
83
84 | 9·9934
9·9946
9·9958
9·9968
9·9976 | 9935
9947
9959
9968
9977 | 9936
9949
9960
9969
9978 | 9937
9950
9961
9970
9978 | 9939
9951
9962
9971
9979 | 9940
9952
9963
9972
9980 | 9941
9953
9964
9973
9981 | 9943
9954
9965
9974
9981 | 9944
9955
9966
9975
9982 | 9945
9956
9967
9975
9983 | 0 0
0 0
0 0
0 0 | 1
1
0
0 | 1 1 1 0 | 1
1
1
1
1 | | 85
86
87
88
89 | 9°9983
9°9989
9°9994
9°9997
9°9999 | 9984
9990
9994
9998
9999 | 9985
9990
9995
9998
0000 | 9985
9991
9995
9998
0000 | 9986
9991
9996
9998
0000 | 9987
9992
9996
9999
0000 | 9987
9992
9996
9999
0000 | 9988
9993
9996
9999
0000 | 9988
9993
9997
9999
0000 | 9989
9994
9997
9999
0000 | 0 0
0 0
0 0
0 0 | 0 0 0 0 0 | 0 0 0 0 | 0
0
0
0
0 | ## Logarithmic Cosines. | | | | | | | | | | | - | | | |------|---------|------------|------------|-------------|-------------|-------------|------|-------------|-------------|-------------|---------------------|-------------------| | Deg. | 0′ | 6′
0°·1 | 12
0°·2 | 18'
0°·3 | 24′
0°·4 | 30°
0°-5 | 0°·6 | 42°
0°·7 | 48′
0°∙8 | 54°
0°∙9 | Mean Di
1' 2' 3' | fference | | 0 | 10:0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 9*9999 | 0 0 0 | 0 0 | | 1 | 9:9999 | 9999 | 9999 | 9999 | 9999 | 9999 | 9998 | 9998 | 9998 | 9998 | 0 0 0 | 0 0 | | 2 | 9:9997 | 9997 | 9997 | 9396 | 9996 | 9996 | 9996 | 9995 | 9995 | 9994 | 0 0 0 | 0 0 | | 3 | 9:9994 | 9994 | 9993 | 9993 | 9992 | 9992 | 9991 | 9991 | 9990 | 9990 | 0 0 0 | 0 0 | | 4 | 9:9989 | 9989 | 9988 | 9988 | 9987 | 9987 | 9986 | 9985 | 9985 | 9984 | 0 0 0 | 0 0 | | 5 | 9·9983 | 9983 | 9982 | 9981 | 9981 | 9980 | 9979 | 9978 | 9978 | 9977 | 0 0 0 | 0 1 | | 6 | 9·9976 | 9975 | 9975 | 9974 | 9973 | 9972 | 9971 | 9970 | 9969 | 9968 | 0 0 0 | 1 1 | | 7 | 9·9968 | 9967 | 9966 | 9965 | 9964 | 9963 | 9962 | 9961 | 9960 | 9959 | 0 0 1 | 1 1 | | 8 | 9·9958 | 9956 | 9955 | 9954 | 9953 | 9952 | 9951 | 9950 | 9949 | 9047 | 0 0 1 | 1 1 | | 9 | 9·9946 | 9945 | 9944 | 9943 | 9941 | 9940 | 9939 | 9937 | 9936 | 9935 | 0 0 1 | 1 1 | | 10 | 9°9934 | 9932 | 9931 | 9929 | 9928 | 9927 | 9925 | 9924 | 9922 | 9921 | 0 0 1 | 1 1 | | 11 | 9°9919 | 9918 | 9916 | 9915 | 9913 | 9912 | 9910 | 9909 | 9907 | 9906 | 0 1 1 | 1 1 | | 12 | 9°9904 | 9902 | 9901 | 9899 | 9897 | 9896 | 9894 | 9892 | 9891 | 9889 | 0 1 1 | 1 1 | | 13 | 9°9887 | 9885 | 9884 | 9882 | 9880 | 9878 | 9876 | 9875 | 9873 | 9871 | 0 1 1 | 1 2 | | 14 | 9°9869 | 9867 | 9865 | 9863 | 9861 | 9859 | 9857 | 9855 | 9853 | 9851 | 0 1 1 | 1 2 | | 15 | 9·9849 | 9847 | 9845 | 9843 | 9841 | 9839 | 9837 | 9835 | 9833 | 9831 | 0 1 1 | 1 2 | | 16 | 9·9828 | 9826 | 9824 | 9822 | 9820 | 9817 | 9815 | 9813 | 9811 | 9808 | 0 1 1 | 2 2 | | 17 | 9·9806 | 9804 | 9801 | 9799 | 9797 | 9794 | 9792 | 9789 | 9787 | 9785 | 0 1 1 | 2 2 | | 18 | 9·9782 | 9780 | 9777 | 9775 | 9772 | 9770 | 9767 | 9764 | 9762 | 9759 | 0 1 1 | 2 2 | | 19 |
9·9757 | 9754 | 9751 | 9749 | 9746 | 9743 | 9741 | 9738 | 9735 | 9733 | 0 1 1 | 2 2 | | 20 | 9·9730 | 9727 | 9724 | 9722 | 9719 | 9716 | 9713 | 9710 | 9707 | 9704 | 0 1 1 | 2 2 | | 21 | 9·9702 | 9699 | 9696 | 9693 | 9690 | 9687 | 9684 | 9681 | 9678 | 9675 | 0 1 1 | 2 2 | | 22 | 9·9672 | 9669 | 9666 | 9662 | 9659 | 9656 | 9653 | 9650 | 9647 | 9643 | 1 1 2 | 2 3 | | 23 | 9·9640 | 9637 | 9634 | 9631 | 9627 | 9624 | 9621 | 9617 | 9614 | 9611 | 1 1 2 | 2 3 | | 24 | 9·9607 | 9604 | 9601 | 9597 | 9594 | 9590 | 9587 | 9583 | 9580 | 9576 | 1 1 2 | 2 3 | | 25 | 9·9573 | 9569 | 9566 | 9562 | 9558 | 9555 | 9551 | 9548 | 9544 | 9540 | 1 1 2 | 2 3 | | 26 | 9·9537 | 9533 | 9529 | 9525 | 9522 | 9518 | 9514 | 9510 | 9507 | 9503 | 1 1 2 | 3 3 | | 27 | 9·9499 | 9495 | 9491 | 9487 | 9483 | 9479 | 9475 | 9471 | 9467 | 9463 | 1 1 2 | 3 3 | | 28 | 9·9459 | 9455 | 9451 | 9447 | 9443 | 9439 | 9435 | 9431 | 9427 | 9422 | 1 1 2 | 3 3 | | 29 | 9·9418 | 9114 | 9410 | 9406 | 9401 | 9397 | 9393 | 9388 | 9384 | 9380 | 1 1 2 | 4 | | 30 | 9·9375 | 9371 | 9367 | 9362 | 9358 | 9353 | 9349 | 9344 | 9340 | 9335 | 1 1 2 | 3 4 | | 31 | 9·9331 | 9326 | 9322 | 9317 | 9312 | 9308 | 9303 | 9298 | 9294 | 9289 | 1 2 2 | 3 4 | | 32 | 9·9284 | 9279 | 9275 | 9270 | 9265 | 9260 | 9255 | 9251 | 9246 | 9241 | 1 2 2 | 3 4 | | 33 | 9·9236 | 9231 | 9226 | 9221 | 9216 | 9211 | 9206 | 9201 | 9196 | 9191 | 1 2 3 | 3 4 | | 34 | 9·9186 | 9181 | 9175 | 9170 | 9165 | 9160 | 9155 | 9149 | 9144 | 9139 | 1 2 3 | 3 4 | | 35 | 9°9134 | 9128 | 9123 | 9118 | 9112 | 9107 | 9101 | 9096 | 9091 | 9085 | 1 2 3 | 4 5 | | 36 | 9°9080 | 9074 | 9069 | 9063 | 9057 | 9052 | 9046 | 9041 | 9035 | 9029 | 1 2 3 | 4 5 | | 37 | 9°9023 | 9018 | 9012 | 9006 | 9000 | 8995 | 8989 | 8983 | 8977 | 8971 | 1 2 3 | 4 5 | | 38 | 9°8965 | 8959 | 8953 | 8947 | 8941 | 8935 | 8929 | 8923 | 8917 | 8911 | 1 2 3 | 4 5 | | 39 | 9°8905 | 8899 | 8893 | 8887 | 8880 | 8874 | 8868 | 8862 | 8855 | 8849 | 1 2 3 | 4 5 | | 40 | 9:8843 | 8836 | 8830 | 8823 | 8817 | 8810 | 8804 | 8797 | 8791 | 8784 | 1 2 3 | 4 5 6 5 6 5 6 5 6 | | 41 | 9:8778 | 8771 | 8765 | 8758 | 8751 | 8745 | 8738 | 8731 | 8724 | 8718 | 1 2 3 | | | 42 | 9:8711 | 8704 | 8697 | 8690 | 8683 | 8676 | 8669 | 8662 | 8655 | 8648 | 1 2 3 | | | 43 | 9:8641 | 8634 | 8627 | 8620 | 8613 | 8606 | 8598 | 8591 | 8584 | 8577 | 1 2 4 | | | 44 | 9:8569 | 8562 | 8555 | 8547 | 8540 | 8532 | 8525 | 8517 | 8510 | 8502 | 1 2 4 | | # Logarithmic Cosines. | . 1 | | | | | 241 | 0.0 | 00: | | 40: | | 25 70100 | | |----------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|-------------------------------------| | Deg. | 0. | 6'
0°•1 | 0°.2 | 03 | 24′
0°∙4 | 0°·5 | 0°.6 | 42'
0°·7 | 48′
0°⋅8 | 54
0°∙9 | Mean Diff
1' 2' 3' | | | 45 | 9·8495 | 8487 | 8480 | 8472 | 8464 | 8457 | 8449 | 8441 | 8433 | 8426 | 1 3 4 | 5 6 7 6 7 6 7 | | 46 | 9·8418 | 8410 | 8402 | 8394 | 8386 | 8378 | 8370 | 8362 | 8354 | 8346 | 1 3 4 | | | 47 | 9·8338 | 8330 | 8322 | 8313 | 8305 | 8297 | 8289 | 8280 | 8272 | 8264 | 1 3 4 | | | 48 | 9·8255 | 8247 | 8238 | 8230 | 8221 | 8213 | 8204 | 8195 | 8187 | 8178 | 1 3 4 | | | 49 | 9·8169 | 8161 | 8152 | 8143 | 8134 | 8125 | 8117 | 8108 | 8099 | 8090 | 1 3 4 | | | 50
51
52
53
54 | 9·8081
9·7989
9·7893
9·7795
9·7692 | 8072
7979
7884
7785
7682 | 8063
7970
7874
7774
7671 | 8053
7960
7864
7764
7661 | 8044
7951
7854
7754
7650 | 8035
7941
7844
7744
7640 | 8026
7932
7835
7734
7629 | 8017
7922
7825
7723
7618 | 8007
7913
7815
7713
7607 | 7998
7903
7805
7703
7597 | 2 3 5
2 3 5
2 3 5
2 3 5
2 4 5 | 6 8
6 8
7 9
7 9 | | 55
56
57
58
59 | 9·7586
9·7476
9·7361
9·7242
9·7118 | 7575
7464
7349
7230
7106 | 7564
7453
7338
7218
7093 | 7553
7442
7326
7205
7080 | 7542
7430
7314
7193
7068 | 7531
7419
7302
7181
7055 | 7520
7407
7290
7168
7042 | 7509
7396
7278
7156
7029 | 7498
7384
7266
7144
7016 | 7487
7373
7254
7131
7003 | 2 4 6
2 4 6
2 4 6
2 4 6
2 4 6
2 4 6 | 7 9
8 10
8 10
8 10
9 11 | | 60 | 9·6990 | 6977 | 6963 | 6950 | 6937 | 6923 | 6910 | 6896 | 6883 | 6869 | 2 4 7 | 9 11 | | 61 | 9·6856 | 6842 | 6828 | 6814 | 6801 | 6787 | 6773 | 6759 | 6744 | 6730 | 2 5 7 | 9 12 | | 62 | 9·6716 | 6702 | 6687 | 6673 | 6659 | 6644 | 6629 | 6615 | 6600 | 6585 | 2 5 7 | 10 12 | | 63 | 9·6570 | 6556 | 6541 | 6526 | 6510 | 6495 | 6480 | 6465 | 6449 | 6434 | 3 5 8 | 10 13 | | 64 | 9·6418 | 6403 | 6387 | 6371 | 6356 | 6340 | 6324 | 6308 | 6292 | 6276 | 3 5 8 | 11 13 | | 65 | 9·6259 | 6243 | 6227 | 6210 | 6194 | 6177 | 6161 | 6144 | 6127 | 6110 | 3 6 8 | 11 14 | | 66 | 9·6093 | 6076 | 6059 | 6042 | 6024 | 6007 | 5990 | 5972 | 5954 | 5937 | 3 6 9 | 12 15 | | 67 | 9·5919 | 5901 | 5883 | 5865 | 5847 | 5828 | 5810 | 5792 | 5773 | 5754 | 3 6 9 | 12 15 | | 68 | 9·5736 | 5717 | 5698 | 5679 | 5660 | 5641 | 5621 | 5602 | 5583 | 5563 | 3 6 10 | 13 16 | | 69 | 9·5543 | 5523 | 5504 | 5484 | 5463 | 5443 | 5423 | 5402 | 5382 | 5361 | 3 7 10 | 14 17 | | 70 | 9·5341 | 5320 | 5299 | 5278 | 5256 | 5235 | 5213 | 5192 | 5170 | 5148 | 4 7 11 | 14 18 | | 71 | 9·5126 | 5104 | 5082 | 5060 | 5037 | 5015 | 4992 | 4969 | 4946 | 4923 | 4 8 11 | 15 19 | | 72 | 9·4900 | 4876 | 4853 | 4829 | 4805 | 4781 | 4757 | 4733 | 4709 | 4684 | 4 8 12 | 16 20 | | 73 | 9·4659 | 4634 | 4609 | 4584 | 4559 | 4533 | 4508 | 4482 | 4456 | 4430 | 4 9 13 | 17 21 | | 74 | 9·4403 | 4377 | 4350 | 4323 | 4296 | 4269 | 4242 | 4214 | 4186 | 4158 | 5 9 14 | 18 23 | | 75 | 9·4130 | 4102 | 4073 | 4044 | 4015 | 3986 | 3957 | 3927 | 3897 | 3867 | 5 10 15 | 20 24 | | 76 | 9·3837 | 3806 | 3775 | 3745 | 3713 | 3682 | 3650 | 3618 | 3586 | 3554 | 5 11 16 | 21 26 | | 77 | 9·3521 | 3488 | 3455 | 3421 | 3387 | 3353 | 3319 | 3284 | 3250 | 3214 | 6 11 17 | 23 28 | | 78 | 9·3179 | 3143 | 3107 | 3070 | 3034 | 2997 | 2959 | 2921 | 2883 | 2845 | 6 12 19 | 25 31 | | 79 | 9·2806 | 2767 | 2727 | 2687 | 2647 | 2606 | 2565 | 2524 | 2482 | 2439 | 7 14 20 | 27 34 | | 80 | 9·2397 | 2353 | 2310 | 2266 | 2221 | 2176 | 2131 | 2085 | 2038 | 1991 | 8 15 23 | 30 38 | | 81 | 9·1943 | 1895 | 1847 | 1797 | 1747 | 1697 | 1646 | 1594 | 1542 | 1489 | 8 17 25 | 34 42 | | 82 | 9·1436 | 1381 | 1326 | 1271 | 1214 | 1157 | 1099 | 1040 | 0981 | 0920 | 10 19 29 | 38 48 | | 83 | 9·0859 | 0797 | 0734 | 0670 | 0605 | 0539 | 0472 | 0403 | 0334 | 0264 | 11 22 33 | 44 55 | | 84 | 9·0192 | 0120 | 0046 | 8-9970 | 9894 | 9816 | 9736 | 9655 | 9573 | 9489 | 13 26 39 | 52 65 | | 85
86
87
88
89 | 8:9403
8:8436
7:7188
8:5428
8:2419 | 9315
8326
7041
5206
1961 | 9226
8213
6889
4971
1450 | 9135
8098
6731
4723
0870 | 9042
7979
6567
4459
0200 | 8946
7857
6397
4179
7*9408 | 8849
7731
6220
3880
8439 | 8749
7602
6035
3558
7190 | 8647
7468
5842
3210
5429 | 8543
7330
5640
2832
2419 | 16 32 48
21 42 62 | 64 80
84 104 | ## Logarithmic Tangents. | Deg. | 0′ | 6′
0°·1 | 12′
0°·2 | 18'
0°·3 | 24′
0°·4 | 30′
0°·5 | 36′
0°·6 | 42′
0°·7 | 48′
0°∙8 | 54′
0°∙9 | Mean Diff
1' 2' 3' | ferences
4' 5' | |----------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|---| | 0
1
2
3
4 | 8·2419
8·5431
8·7194
8·8446 | 7·2419
2833
5643
7337
8554 | 5429
3211
5845
7475
8659 | 7190
3559
6038
7609
8762 | 8439
3881
6223
7739
8862 | 9409
4181
6401
7865
8960 | 0200
4461
6571
7988
9056 | 0870
4725
6736
8107
9150 | 1450
4973
6894
8223
9241 | 1962
5208
7046
8336
9331 | 21 42 62
16 32 48 | 84 104
64 81 | | 56789 | 8.9420 | 9506 | 9591 | 9674 | 9756 | 9836 | 9915 | 9992 | 0068 | 0143 | 13 26 40 | 53 66 | | | 9.0216 | 0289 | 0360 | 0430 | 0499 | 0567 | 0633 | 0699 | 0764 | 0828 | 11 22 34 | 45 56 | | | 9.0891 | 0954 | 1015 | 1076 | 1135 | 1194 | 1252 | 1310 | 1367 | 1423 | 10 20 29 | 39 49 | | | 9.1478 | 1533 | 1587 | 1640 | 1693 | 1745 | 1797 | 1848 | 1898 | 1948 | 9 17 26 | 35 43 | | | 9.1997 | 2046 | 2094 | 2142 | 2189 | 2236 | 2282 | 2328 | 2374 | 2419 | 8 16 23 | 31 39 | | 10 | 9·2463 | 2507 | 2551 | 2594 | 2637 | 2680 | 2722 | 2764 | 2805 | 2846 | 7 14 21 | 28 35 | | 11 | 9·2887 | 2927 | 2967 | 3006 | 3046 | 3085 | 3123 | 3162 | 3200 | 3237 | 6 13 19 | 26 32 | | 12 | 9·3275 | 3312 | 3349 | 3385 | 3422 | 3458 | 3493 | 3529 | 3564 | 3599 | 6 12 18 | 24 30 | | 13 | 9·3634 | 3668 | 3702 | 3736 | 3770 | 3804 | 3837 | 3870 | 3903 | 3935 | 6 11 17 | 22 28 | | 14 | 9·3968 | 4000 | 4032 | 4064 | 4095 | 4127 | 4158 | 4189 | 4220 | 4250 | 5 10 16 | 21 26 | | 15 | 9·4281 | 4311 | 4341 | 4371 | 4400 | 4430 | 4459 | 4488 | 4517 | 4546 | 5 10 15 | 20 25 | | 16 | 9·4575 | 4603 | 4632 | 4660 | 4688 | 4716 | 4744 | 4771 | 4799 | 4826 | 5 9 14 | 19 23 | | 17 | 9·4853 | 4880 | 4907 | 4934 | 4961 | 4987 | 5014 | 5040 | 5066 | 5092 | 4 9 13 | 18 22 | | 18 | 9·5118 | 5143 | 5169 | 5195 | 5220 | 5245 | 5270 |
5295 | 5320 | 5345 | 4 8 13 | 17 21 | | 19 | 9·5370 | 5394 | 5419 | 5443 | 5467 | 5491 | 5516 | 5539 | 5563 | 5587 | 4 8 12 | 16 20 | | 20 | 9°5611 | 5634 | 5653 | 5681 | 5704 | 5727 | 5750 | 5773 | 5796 | 5819 | 4 8 12 | 15 19 | | 21 | 9°5842 | 5864 | 5887 | 5909 | 5932 | 5954 | 5976 | 5998 | 6020 | 6042 | 4 7 11 | 15 19 | | 22 | 9°6064 | 6086 | 6108 | 6129 | 6151 | 6172 | 6194 | 6215 | 6236 | 6257 | 4 7 11 | 14 18 | | 23 | 9°6279 | 6300 | 6321 | 6341 | 6362 | 6383 | 6404 | 6424 | 6445 | 6465 | 3 7 10 | 14 17 | | 24 | 9°6485 | 6506 | 6527 | 6547 | 6567 | 6587 | 6607 | 6627 | 6647 | 6667 | 3 7 10 | 13 17 | | 25 | 9·6687 | 6706 | 6726 | 6746 | 6765 | 6785 | 6804 | 6824 | 6843 | 6863 | 3 7 10 | 13 16 | | 26 | 9·6882 | 6901 | 6920 | 6939 | 6958 | 6977 | 6996 | 7015 | 7034 | 7053 | 3 6 9 | 13 16 | | 27 | 9·7072 | 7090 | 7109 | 7128 | 7146 | 7165 | 7183 | 7202 | 7220 | 7238 | 3 6 9 | 12 15 | | 28 | 9·7257 | 7275 | 7293 | 7311 | 7330 | 7348 | 7366 | 7384 | 7402 | 7420 | 3 6 9 | 12 15 | | 29 | 9·7438 | 7455 | 7473 | 7491 | 7509 | 7526 | 7544 | 7562 | 7579 | 7597 | 3 6 9 | 12 15 | | 30 | 9°7614 | 7632 | 7649 | 7667 | 7684 | 7701 | 7719 | 7736 | 7753 | 7771 | 3 6 9 | 12 14 | | 31 | 9°7788 | 7805 | 7822 | 7839 | 7856 | 7873 | 7890 | 7907 | 7924 | 7941 | 3 6 9 | 11 14 | | 32 | 9°7958 | 7975 | 7992 | 8008 | 8025 | 8042 | 8059 | 8075 | 8092 | 8109 | 3 6 8 | 11 14 | | 33 | 9°8125 | 8142 | 8158 | 8175 | 8191 | 8208 | 8224 | 8241 | 8257 | 8274 | 3 5 8 | 11 14 | | 34 | 9°8200 | 8306 | 8323 | 8339 | 8355 | 8371 | 8388 | 8404 | 8420 | 8436 | 3 5 8 | 11 14 | | 35 | 9:8452 | 8468 | 8484 | 8501 | 8517 | 8533 | 8549 | 8565 | 8581 | 8597 | 3 5 8 | 11 13 | | 36 | 9:8613 | 8629 | 8644 | 8660 | 8676 | 8692 | 8708 | 8724 | 8740 | 8755 | 3 5 8 | 11 13 | | 37 | 9:8771 | 8787 | 8803 | 8818 | 8834 | 8850 | 8865 | 8881 | 8897 | 8912 | 3 5 8 | 10 13 | | 33 | 9:8028 | 8944 | 8959 | 8975 | 8990 | 9006 | 9022 | 9037 | 9053 | 9068 | 3 5 8 | 10 13 | | 39 | 9:9034 | 9099 | 9115 | 9130 | 9146 | 9161 | 9176 | 9192 | 9207 | 9223 | 3 5 8 | 10 13 | | 40
41
42
43
44 | 9:9238
9:9392
9:9514
9:9697
9:9848 | 9407
9560
9712 | 9269
9422
9575
9727
9879 | 9284
9438
9590
9742
9894 | 9300
9453
9605
9757
9909 | 9315
9468
9621
9773
9924 | 9330
9483
9636
9788
9939 | 9346
9499
9651
9803
9955 | 9361
9514
9666
9818
9970 | 9376
9529
9681
9833
9985 | 3 5 8
3 5 8
3 5 8
3 5 8 | 10 13
10 13
10 13
10 13
10 13 | # Logarithmic Tangents. | 1 | | | | | | | | 40. | 401 | F.4 | 35. | | 7):00: | | | |----------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------|----------------------------|----------------------------|----------------------------------|----------------------------| | Deg. | 0′ | 6°
0°·1 | 12'
0°·2 | 18'
0°·3 | 0°·4 | 0 ⁵ ·5 | 36'
0°.6 | 42'
0°-7 | 48′
0°·8 | 0°.9 | 1' | 2′ | 3.
Dine | 4' | 5′
- | | 45
46
47
48
49 | 10:0000
10:0152
10:0203
10:0456
10:0608 | 0015
0167
0319
0471
0624 | 0030
0182
0334
0486
0639 | 0045
0197
0349
0501
0654 | 0061
0212
0364
0517
0670 | 0076
0228
0379
0532
0685 | 0091
0243
0395
0547
0700 | 0106
0258
0410
0562
0716 | 0121
0273
0425
0578
0731 | 0136
0288
0440
0593
0746 | 3 3 3 | 5
5
5
5
5 | 88888 | 10
10
10
10
10 | 13
13
13
13
13 | | 50
51
52
53
54 | 10.0762
10.0916
10.1072
10.1229
10.1387 | 0777
0932
1088
1245
1403 | 0793
0947
1103
1260
1419 | 0808
0963
1119
1276
1435 | 0824
0978
1135
1292
1451 | 0839
0994
1150
1308
1467 | 0854
1010
1166
1324
1483 | 0870
1025
1182
1340
1499 | 0885
1041
1197
1356
1516 | 0901
1056
1213
1371
1532 | 3 3 3 3 | 5 5 5 5 5 | 8
8
8
8 | 10
10
10
11
11 | 13
13
13
13
13 | | 55
56
57
58
59 | 10°1548
10°1710
10°1875
10°2042
10°2212 | 1564
1726
1891
2059
2229 | 1580
1743
1908
2076
2247 | 1596
1759
1925
2093
2264 | 1612
1776
1941
2110
2281 | 1629
1792
1958
2127
2299 | 1645
1809
1975
2144
2316 | 1661
1825
1992
2161
2333 | 1677
1842
2008
2178
2351 | 1694
1858
2025
2195
2368 | 3 3 3 3 | 5
5
6
6 | 8 8 9 9 | 11
11
11
11
11
12 | 14
14
14
14
14 | | 60
61
62
63
64 | 10·2386
10·2562
10·2743
10·2928
10·3118 | 2403
2580
2762
2947
3137 | 2421
2598
2780
2966
3157 | 2438
2616
2798
2985
3176 | 2456
2634
2817
3004
3196 | 2474
2652
2835
3023
3215 | 2491
2670
2854
3042
3235 | 2509
2689
2872
3061
3254 | 2527
2707
2891
3080
3274 | 2545
2725
2910
3099
3294 | 3 3 3 3 | 6
6
6
6 | 9
9
9
9
10 | 12
12
12
13
13 | 15
15
15
16
16 | | 65
66
67
68
69 | 10:3313
10:3514
10:3721
10:3936
10:4158 | 3333
3535
3743
3958
4181 | 3353
3555
3764
3980
4204 | 3373
3576
3785
4002
4227 | 3393
3596
3806
4024
4250 | 3413
3617
3828
4046
4273 | 3433
3638
3849
4068
4296 | 3453
3659
3871
4091
4319 | 3473
3679
3892
4113
4342 | 3494
3700
3914
4136
4366 | 3
3
4
4
4 | 01 -1 -1 -1 | 10
10
11
11
11 | 13
14
14
15
15 | 17
17
18
19
19 | | 70
71
72
73
74 | 10°4383
10°4630
10°4882
10°5147
10°5425 | 4413
4655
4908
5174
5454 | 4437
4680
4934
5201
5483 | 4461
4705
4960
5229
5512 | 4484
4730
4986
5256
5541 | 4509
4755
5013
5284
5570 | 4533
4780
5039
5312
5600 | 4557
4805
5066
5340
5629 | 4581
4831
5093
5368
5659 | 4606
4857
5120
5397
5689 | 4 4 5 5 | 8
9
9
10 | 12
13
13
14
15 | 16
17
18
19
20 | 20
21
22
23
25 | | 75
76
77
78
79 | 10·5719
10·6032
10·6366
10·6725
10·7113 | 5750
6065
6401
6763
7151 | 5780
6097
6436
6800
7195 | 5811
6130
6471
6838
7236 | 5842
6163
6507
6877
7278 | 5873
6196
6542
6915
7320 | 5905
6230
6578
6954
7363 | 5936
6264
6615
6994
7406 | 5968
6298
6651
7033
7449 | 6000
6332
6688
7073
7493 | 5
6
6
6
7 | 10
11
12
13
14 | 16
17
18
19
21 | 21
22
24
26
28 | 26
28
30
32
35 | | 80
81
82
83
81 | 10.7537
10.8003
10.8522
10.9109
10.9784 | 7581
8052
8577
9172
9857 | 7626
8102
8633
9236
9932 | 7672
8152
8690
9301
0008 | 7718
8203
8748
9367
0085 | 7764
8255
8806
9433
0164 | 7811
8307
8865
9501
0244 | 7858
8360
8924
9570
0326 | 7906
8413
8985
9640
0409 | 7954
8467
9046
9711
0494 | 8
9
10
11
13 | 16
17
20
22
26 | 23
26
29
34
40 | 31
35
39
45
53 | 39
43
49
56
66 | | 85
86
87
88
89 | 11.0580
11.1554
11.2806
11.4569
11.7581 | 0669
1664
2954
4792
8038 | 0759
1777
3106
5027
8550 | 0850
1893
3264
5275
9130 | 0944
2012
3429
5539
9800 | 1040
2135
3599
5819
0591 | 1138
2261
3777
6119
1561 | $\begin{array}{c} 1238 \\ 2391 \\ 3962 \\ 6441 \\ \hline 2810 \end{array}$ | 1341
2525
4155
6789
4571 | 1446
2663
4357
7167
7581 | 16
20 | 32
42 | 48
62 | 64
84 | 81
104 | # ANSWERS. #### I. Page 4. - 1. '75. 2. '125. 3. '375. 4. '024i. 5. '089. 6. '0204045. 7. '76g 91' 66·7''. 8. 21g 12' 50''. - 9. 56g 24' 25". 10. 48g 75 '25''. 11. 12g 23' 40.7''. - 12. 158g 6' 94·4". 13. 22' 50". 14. 6' 36.7". - 15. 51° 11′ 15″. **16.** 35° 9′ 22·5″. **17.** 36° 0′ 40·6″. - 19. 2° 43′ 6·4″. 18. 55′ 5.8″. 20. 7° 17′ 26·1″. - 22.' 20' 0·4". 23. 45°, 27°, 24. 72°. 21. 3'22.5". #### II b. PAGE 11. - 1. $\frac{15}{17}$, $\frac{17}{8}$, $\frac{8}{15}$, $\frac{17}{15}$. 2. $\frac{12}{5}$, $\frac{13}{12}$, $\frac{5}{13}$, $\frac{12}{13}$. - 3. $25, \frac{4}{5}, \frac{4}{5}, \frac{3}{4}, \frac{5}{8}$ 4. $7, \frac{7}{25}, \frac{24}{7}, \frac{25}{24}$ - 5. $\frac{37}{35}$, $\frac{37}{12}$, $\frac{35}{12}$, $\frac{35}{37}$. 6. 12 inches, $\frac{4}{5}$, $\frac{3}{5}$, $\frac{4}{3}$. - 7. $25, \frac{24}{25}, \frac{7}{25}$ 8. 40 ft., $\frac{40}{41}$, $\frac{9}{40}$. - 9. 20 ft., $\sin e = \frac{20}{20}$, $\cos ine = \frac{21}{20}$, $\tan gent = \frac{20}{21}$. - $sine = \frac{1}{\sqrt{5}}$, $cosine = \frac{2}{\sqrt{5}}$, $tangent = \frac{1}{2}$. 10. - $\frac{12}{13}$, $\frac{13}{12}$, $\frac{77}{85}$, $\frac{85}{77}$. 12. $\frac{3}{5}$, $\frac{4}{3}$, $\frac{20}{20}$, $\frac{29}{20}$. 11. # III. c. PAGE 23. 1. $\frac{2}{\sqrt{3}}$, $\sqrt{3}$. 2. $\frac{4}{5}$, $\frac{3}{5}$. 3. $\frac{1}{\sqrt{15}}$, $\frac{\sqrt{15}}{4}$. 4. $\frac{\sqrt{5}}{2}$, $\sqrt{5}$. 5. $$\frac{\sqrt{48}}{7}$$, $\frac{1}{\sqrt{48}}$. 6. $\frac{7}{24}$, $\frac{25}{24}$. 7. $\sqrt{1-\cos^2 A}$, $\sqrt{\frac{1-\cos^2 A}{\cos A}}$. 7. $$\sqrt{1-\cos^2 A}$$, $\sqrt{\frac{1-\cos^2 A}{\cos A}}$ 8.
$$\sqrt{1+\cot^2\alpha}$$, $\frac{\cot\alpha}{\sqrt{1+\cot^2\alpha}}$ 8. $$\sqrt{1+\cot^2\alpha}$$, $\frac{\cot\alpha}{\sqrt{1+\cot^2\alpha}}$. 9. $\frac{\sqrt{\sec^2\theta-1}}{\sec\theta}$, $\frac{1}{\sqrt{\sec^2\theta-1}}$. 10. $$\csc A = \frac{1}{\sin A}$$, $\cos A = \sqrt{1 - \sin^2 A}$, $\sec A = \frac{1}{\sqrt{1 - \sin^2 A}}$, $$\tan A = \frac{\sin A}{\sqrt{1 - \sin^2 A}}, \cot A = \frac{\sqrt{1 - \sin^2 A}}{\sin A}.$$ 11. $\sqrt{2}$ 13. $$\frac{p}{q}$$. 14. $\frac{m^2-1}{2m}$, $\frac{m^2-1}{m^2+1}$. 15. $\frac{p^2-q^2}{p^2+q^2}$, $\frac{p^2+q^2}{2pq}$. 16. 3. 17. $$\frac{p^2 - q^2}{p^2 + q^2}$$. ### IV. a. PAGE 26. 1. 5. 2. $$1\frac{1}{2}$$. 3. 0. 4. $2\frac{1}{3}$. 5. $\frac{1}{2}$. 6. $$1\frac{1}{2}$$, 7. 9. 8. 2. 9. $2\frac{1}{12}$. 10. $\frac{1}{2}$. 11. $$\frac{3}{4}$$. 12. 0. 13. $1\frac{11}{12}$. 14. $\frac{\sqrt{3}}{2}$. 15. 6. # IV. b. PAGE 28. 1. $$22^{\circ}30'$$. 2. $64^{\circ}59'30''$. 3. $79^{\circ}58'57''$. 4. $45^{\circ}+A$. **5.** $$45^{\circ} - B$$. **6.** $60^{\circ} + B$. **7.** 50° . **8.** 60° . # IV. c. PAGE 29_B. #### IV. d. PAGE 31. 11. $$45^{\circ}$$. 12. 60° . 13. 45° . 14. 30° . 15. 45° . ### MISCELLANEOUS EXAMPLES. A. PAGE 32. 1. (1) $$\cdot 2537064$$; (2) $\cdot 704$. 3. $\frac{20}{29}, \frac{29}{21}$. 4. $\frac{15}{8}, \frac{17}{8}$. 6. (1) $$15^{\circ}28'7.5''$$; (2) $1'37.2''$. 7. $41, \frac{9}{40}, \frac{41}{9}, \frac{41}{40}$ 8. (1) possible; (2) impossible; (3) possible. 10. $$\frac{\sqrt{1+\cot^2\alpha}}{\cot\alpha}, \quad \sqrt{1+\cot^2\alpha}.$$ 11. 6. 12. $$\frac{m}{\sqrt{m^2 + n^2}}$$, $\frac{\sqrt{m^2 + n^2}}{n}$. 16. $\frac{20}{21}$, $\frac{29}{20}$. **22.** 30°. **25.** 19° 28′. # V. a. PAGE 37. 1. $$c=2$$, $B=60^{\circ}$, $C=30^{\circ}$. 2. $a=6\sqrt{3}$, $A=60^{\circ}$, $C=30^{\circ}$. 3. $$c = 8 \sqrt{3}$$, $A = 30^\circ$, $B = 60^\circ$. 4. $c = 30 \sqrt{3}$, $B = 30^\circ$, $C = 60^\circ$. 5, $$b = 20 \sqrt{2}$$, $A = C = 45^{\circ}$. 6. $c = 10 \sqrt{3}$, $A = 30^{\circ}$, $B = 60^{\circ}$. 7. $$a = 2\sqrt{2}$$, $B = C = 45^{\circ}$. 8. $a = 9$, $A = 60^{\circ}$, $C = 30^{\circ}$. 9. $$B = 60^{\circ}$$, $b = 27$, $c = 18\sqrt{3}$. 10. $C = 65^{\circ}$, $b = 1.69$, $c = 2\sqrt{3}$. **11.** $$B = 36^{\circ}$$, $a = 3.236$, $b = 4.702$. **12.** $B = 90^{\circ}$, $a = 2.724$, $c = 5.346$. **13.** $$A = 53^{\circ}$$, $a = 60.18$, $c = 79.86$. **14.** $C = 90^{\circ}$, $a = 20$, $c = 40$. **15.** $$A = 90^{\circ}$$, $a = 4\sqrt{2}$, $b = 4$. **16.** $A = 90^{\circ}$, $b = 4$, $c = 4\sqrt{3}$. **21.** $$C = 54^\circ$$, $a = 73$, $b = 124$. **22.** $B = 68^\circ 17'$, $C = 21^\circ 43'$, $b = 93$. **23.** $$C = 50^{\circ} 36'$$, $a = 39.3875$, $c = 30.435$. **24.** $$c = 353$$, $A = 39^{\circ} 36'$, $B = 50^{\circ} 24'$. **25.** $$A = 24^{\circ}30'$$, $B = 65^{\circ}30'$, $a = 10.37$. #### V. b. PAGE 39. 1. $10\sqrt{3}=17\cdot32$. 2. $a=10\sqrt{2}=14\cdot14$, c=20. 3. AB = 17.32 ft., AC = 10 ft., AD = 8.66 ft. 4. 12, 4. 5. 22·56. 6. 22·89. 7. $20(3+\sqrt{3})=94.64$. 8. DC=BD=100. 9. 13·382, 36° 25′. ### VI. a. PAGE 42. 1. 173 · 2 ft. 2. 277 · 12 ft. 3. 60°. 4. 50 ft.; 100 ft. 5. 22 · 5 ft.; 38 · 97 ft. 6. 30 ft. 7. 200 yds. 16. 300 ft. 8. 51 yds., 81 yds. 9. 86.6 yds. 10. 46.19 ft. 11. 273·2 ft. 12. Each=70·98 ft. 13. 5 miles. 14. 73·2 ft. 15. 64 ft. # 17. 1193 yds. 18. 277·12 yds. # VI. b. PAGE 47. 1. 565.6 yds.; 1131.2 yds. 2. 3.464 miles; 6 miles. 3. 29 miles. 4. 10 miles per hour. 10 miles; 24·14 miles. 9·656 miles. 16 miles; S. 25° W. 9·77 miles; 11·54 miles. 9. 295·1 knots. 10. 5·196 miles per hour; 18 miles. 11. 31 minutes past midnight. 12. 38.97 miles per hour. ### VI. c. PAGE 48A. 1. 36 yds, 1 ft. 2. 340 ft. 3. 161·8 m. 4. 586 ft. 5. 24 yds. 6. 26°34′, 63°26′. 7. 80°26′, 80°26′, 19°8′. 8. 107 ft. 9. 244 ft. 10. 668 yds. 11. 28° 15′. 12. 467·9 m., 784·7 m. 13. 118·35 ft. 14. 271 m. 15. 7·9 mi, 16. 970 m. 17. 441·5. 18. N. 38° 23′ E. 19. 13·49 mi., 24·12 mi. ### VII. a. PAGE 54. 1. $\frac{\pi}{4}$. 2. $\frac{\pi}{6}$. 3. $\frac{7\pi}{12}$. 4. $\frac{\pi}{8}$. 5. $\frac{\pi}{10}$. 6. $\frac{23\pi}{72}$. 7. $\frac{2\pi}{25}$. 8. $\frac{7\pi}{16}$. 9. 4509. 10. 6545. - 1. 1.4399. - 12. 1·1999. - 13. 2·7489. - **14**. •9163. - 15. 135°. 22° 30′. - 16. 28°. - 17. 33° 20′. - 18. 37° 30′. - 19. - **20.** 38° 30′. - 21. 29° 48′. - 22, 165°, - 23. '638. - 24. 1·232. - **25**. 2·0262, - 26, 2.9979. # VII. b. PAGE 56. 1. $$\frac{3}{4}$$. - 1. $\frac{3}{4}$. 2. $\frac{1}{3\sqrt{2}}$. 3. $4\frac{1}{4}$. 4. $\frac{3}{\sqrt{2}}$. 5. 9. 6. $\frac{3}{4}$. 7. 1. 13. $\frac{\pi}{4}$, $\frac{2\pi}{15}$. 14. $\frac{5\pi}{6}$, $\frac{5\pi}{7}$. ### VII. c. PAGE 60. 1. $\frac{1}{5}$. - 2, 300 ft, 3. A radian. - 4. 5.85 yards. - 5. 330. 6. $\frac{1}{44}$ of a second. - 7. $58\frac{2}{3}$. - 9. 1.15192 miles. - 10. 17.904. - 8. 40 yds. 9. 1·15192 11. 2° 6′. 12. 45 feet. # MISCELLANEOUS EXAMPLES. B. PAGE 61. - 1. 9°. 2. 95·26. 3. 54°. - 4. 3438 inches. 12. 17·32 ft. - 6. 30° . 8. $22\frac{1}{2}^{\circ}$, $\frac{\pi}{8}$. 9. $67\frac{1}{2}^{\circ}$. - 10. $a=6\sqrt{3}$, c=12, perp. $=3\sqrt{3}$. - 14. 120°, 36°, 24°. - 15. $-\frac{35}{8}$. - 17. (1) possible; (2) impossible. - 18. 8.66 miles. 19. $\frac{\pi}{5}$, $\frac{\pi}{3}$, $\frac{7\pi}{15}$. 21. 90. 24. 4 miles per hour, 1.732 miles. - 25. - **26.** (1) 30°; (2) 30°. - 27. 5 200 yards. 30. 33 feet. #### VIII. a. PAGE 69. - 1. Second. 2. Third. 3. First. 4. Third. - 5. Second. 6. Second. 7. Third. 8. Third. - 9. Sine. 10. Cosine. 11. Tangent. 12. Sine. - 13. Sine. 14. Tangent. 15. Sine. 16. All. - 17. Cosine. 18. $60^{\circ}, \frac{\sqrt{3}}{2}$. 19. $30^{\circ}, \frac{\sqrt{3}}{2}$. 20. $45^{\circ}, 1$. - **21.** 45° , $\sqrt{2}$. **22.** 30° , 2. **23.** 60° , $\frac{2}{\sqrt{3}}$. **24.** 45° , 1. - **25.** 60° , 2. **26.** 60° , $\sqrt{3}$. # VIII. b. PAGE 72. - 1. $-\sqrt{3}$. 2. $\frac{1}{\sqrt{2}}$. 3. $-\frac{1}{2}$. - 4. $-\frac{12}{13}, \frac{12}{5}$. 5. $-\frac{5}{4}, -\frac{3}{4}$. 6. $\frac{4}{3}, -\frac{3}{5}$. - 7. $\frac{\sqrt{3}}{2}$, $-\frac{1}{\sqrt{3}}$. 8. 1, $-\sqrt{2}$. 9. $\pm \frac{5}{13}$, $\pm \frac{5}{12}$. # IX. PAGE 79. 1. $\cot A$ decreases from ∞ to 0, then increases numerically from 0 to $-\infty$, then decreases from ∞ to 0, then increases numerically from 0 to $-\infty$. 2. $\csc \theta$ decreases from ∞ to 1, then increases from 1 to ∞ . 3. $\cos \theta$ decreases numerically from -1 to 0, then increases from 0 to 1. 4. $\tan A$ decreases from ∞ to 0, then increases numerically from 0 to $-\infty$. 5. $\sec \theta$ decreases numerically from -1 to $-\infty$. 6. 3. 7. 1. 8. -2. 9. 2. # MISCELLANEOUS EXAMPLES. C. PAGE 80. - $\pm \frac{4}{5}$. 3. $A = 60^{\circ}$, $B = 30^{\circ}$, $a = \frac{21\sqrt{3}}{2}$. 4. $\frac{7}{24}$ - 5. 1313 miles, nearly. 6. 301 feet. 7. $3\frac{7}{10}$ - 8. 12.003 inches. 10. 200 feet. 11. 45°. - 12. 36° 52′, 126° 52′. 13. 10 mi., 1480 mi. - **14.** 6 km, per hour; 346 f m. **15.** $\alpha = 49^{\circ} 19'$, $\beta = 2^{\circ} 14'$. - 16. 1. 17. 27:35 mi.; 18:65 mi. ### X. a. Page 87. 1. $$=\frac{1}{\sqrt{2}}$$. $$2. \ \frac{1}{2}.$$ 5. $$-\frac{\sqrt{3}}{2}$$ 8. $$-\frac{1}{2}$$ 10. -1. 11. $$-\frac{\sqrt{3}}{2}$$. 14. $$-\frac{1}{\sqrt{2}}$$. 15. $\sqrt{3}$. **15.** $$\sqrt{3}$$. 22. $$-\cos\theta$$. 23. $\tan\theta$. 24. $$-\csc\theta$$. # X. b. PAGE 91. 1. $$-\frac{1}{2}$$. 2. $-\frac{\sqrt{3}}{2}$. 3. $\frac{1}{2}$. 4. $-\frac{1}{2}$. 5. -1. 2. $$-\frac{\sqrt{3}}{2}$$. 3. $$\frac{1}{2}$$. 4. $$-\frac{1}{2}$$ 7. $$\frac{2}{\sqrt{3}}$$ 6. 1. 7. $$\frac{2}{\sqrt{3}}$$. 8. $-\frac{1}{\sqrt{3}}$. 9. $-\sqrt{2}$. 10. $\frac{1}{\sqrt{2}}$. 11. 0. 12. $$\frac{1}{\sqrt{2}}$$. 13. $-\sqrt{2}$. 14. $-\frac{1}{2}$. 15. $-\sqrt{2}$. 16. $$-\frac{1}{\sqrt{2}}$$. 17. -1. 18. 2. 19. $\frac{1}{\sqrt{3}}$. 20. $\frac{2}{\sqrt{3}}$. 21. $\pm 30^{\circ}$, $\pm 330^{\circ}$. 22. 210° , 330° , -30° , -150° . $$30^{\circ}, = 150^{\circ}.$$ ### XI. a. PAGE 97. 4. 1; $$\frac{24}{25}$$. 5. $$\frac{33}{65}$$; $\frac{16}{65}$. 6. $$\frac{85}{36}$$ # XI. b. PAGE 100. $$\frac{1}{7}$$. 3. $$0; \frac{12}{35}$$ 2. $$\frac{1}{7}$$. 3. 0; $\frac{12}{35}$. 4. $-\frac{278}{29}$; $\frac{1}{2}$. 11. $\cos A \cos B \cos C - \cos A \sin B \sin C - \sin A \cos B \sin C$ $-\sin A \sin B \cos C$; $\sin A \cos B \cos C - \cos A \sin B \cos C + \cos A \cos B \sin C$ $+\sin A\sin B\sin C$. - $\tan A \tan B \tan C \tan A \tan B \tan C$ 12. $1 - \tan B \tan C + \tan C \tan A + \tan A \tan B$ - $\cot A \cot B \cot C \cot A \cot B \cot C$ 13. $\cot B \cot C + \cot C \cot A + \cot A \cot B - 1$ #### XI. d. PAGE 104. 1. $$-\frac{7}{9}$$. 2. $\frac{17}{25}$. 3. $$\frac{24}{25}$$. 4. $\frac{3}{4}$. 5. $$\frac{7}{25}$$; $\frac{24}{25}$. 6. $\frac{1}{3}$. 7. $\frac{1}{7}$. # XI. e. PAGE 106. 1. $$-\frac{23}{27}$$. 2. $$\frac{117}{125}$$. 3. $\frac{9}{12}$. # XII. a. PAGE 112. 1. $$\sin 4\theta + \sin 2\theta$$. 2. $$\sin 9\theta - \sin 3\theta$$. $\sin 4\theta + \sin 2\theta$. 2. $\sin 9\theta - \sin 3\theta$. 3. $\cos 12A + \cos 2A$. **4.** $$\cos A - \cos 5A$$. **7.** $\cos 6\theta - \cos 12\theta$. 5. $$\sin 9\theta - \sin \theta$$. 6. $\sin 12\theta - \sin 4\theta$. 5. $$\sin 9\theta - \sin \theta$$. 6. $\sin 12\theta - \sin 4\theta$. 8. $\sin 16\theta - \sin 2\theta$. 9. $\cos 13\alpha + \cos 9\alpha$. 10. $$\cos 5a - \cos 15a$$. 11. $$\frac{1}{2} (\sin 11\alpha - \sin 3\alpha)$$. 12. $$\frac{1}{2}(\cos 2\alpha - \cos 4\alpha)$$. 13. $$\frac{1}{2} (\sin 2A + \sin A)$$. 14. $$\frac{1}{2} (\sin 6A - \sin A)$$. 15. $$\cos \frac{7\theta}{3} + \cos \theta$$. 16. $$\frac{1}{2} \left(\cos \frac{\theta}{2} - \cos \theta \right)$$. 17. $$\cos(\alpha+\beta)+\cos(\alpha-3\beta)$$. 18. $$\cos (2\alpha -
\beta) - \cos (4\alpha + \beta)$$. 19. $$\sin (3\theta - \phi) + \sin (\theta + 3\phi)$$. **20.** $$\sin (4\theta - \phi) - \sin (2\theta + 3\phi)$$. $$21. \quad \frac{1}{2} \left(\frac{\sqrt{3}}{2} - \sin 2\alpha \right).$$ # XII. b. PAGE 114. 1. $$2\sin 6\theta\cos 2\theta$$. 2. $$2\cos 3\theta \sin 2\theta$$. 3. $2\cos 5\theta \cos 2\theta$. 3. $$2\cos 5\theta \cos 2\theta$$. 4. $$2\sin 10\theta \sin \theta$$ 4. $$2\sin 10\theta \sin \theta$$. 5. $2\cos 6a\sin \alpha$. 6. $2\cos \frac{11a}{2}\cos \frac{5a}{2}$. 8. $$-2\sin 3a\sin 2a$$ 7. $$2 \sin 8a \cos 5a$$. 8. $-2 \sin 3a \sin 2a$. 9. $2 \cos \frac{11A}{9} \cos \frac{7A}{9}$. 10. $$-2\cos 7A\sin 4A$$. 11. $\sin 20^{\circ}$. 12. $\sqrt{3}\cos 10^{\circ}$. #### XII. f. PAGE 1224. 10. 1+2 cos A. 11. 352; 69° 23′. 14. $\sin 10a + \sin 6a + \sin 4a$. 15. 2·4936. 16. 10°. 18. $\sin 2\theta = .96$; $\cos 2\theta = .28$. **26.** $\sin 2\theta = .8$; $\cos 2\theta = -.6$; $\theta = 63^{\circ} 26'$. **27.** $\theta = 50^{\circ} 12'$, or 90. ### XIII. a. PAGE 128. **1.** 60° . **2.** 120° . **3.** $A = 30^{\circ}$, $B = 120^{\circ}$, $C = 30^{\circ}$. **4.** 45° . 5. 90°. 6. $A = 75^{\circ}$, $B = 45^{\circ}$, $C = 60^{\circ}$. 7. $A = 30^{\circ}$, $B = 135^{\circ}$, $C = 15^{\circ}$. 8. $28^{\circ} 56'$. 9. $101^{\circ} 32'$. **10.** $\sqrt{6}$. **11.** 7. **12.** 8. **13.** 14. **14.** 9. **15.** $b=2\sqrt{6}$, $A=75^{\circ}$, $C=30^{\circ}$. **16.** $a=\sqrt{5}+1$, $B=36^{\circ}$, $C=72^{\circ}$. 17. $C=75^{\circ}$, $a=c=2\sqrt{3}+2$. 18. $A=105^{\circ}$, $a=\sqrt{3}+1$, $c=\sqrt{3}-1$. **19.** $C = 30^{\circ}$, a = 2, $b = \sqrt{3} + 1$. **21.** 2. **22.** 6. **23.** 60°. **24.** 105° , 45° , 30° . **25.** 105° , 15° , 60° . **26.** $\frac{\sqrt{3}}{2}$, 105° , 15° . #### XIII. b. PAGE 132. 1. $B = 60^{\circ}$, 120° ; $C = 90^{\circ}$, 30° ; c = 2, 1. 2. $B = 60^{\circ}$, 120° ; $A = 75^{\circ}$, 15° ; $a = 3 + \sqrt{3}$, $3 - \sqrt{3}$. 3. $A=45^{\circ}$, $B=75^{\circ}$, $b=\sqrt{3}+1$; no ambiguity. 4. Impossible, 5. $C=45^{\circ}$, 135° ; $A=105^{\circ}$, 15° ; $a=3+\sqrt{3}$, $3-\sqrt{3}$. 6. $C=75^{\circ}$, 105° ; $A=45^{\circ}$, 15° ; a=2, 3, 3-, 3. 7. $A = 75^{\circ}$, 105° ; $B = 90^{\circ}$, 60° ; $b = 2 \frac{1}{5}$, $3 \frac{1}{5}$. 8. $B = 90^{\circ}$, $C = 72^{\circ}$, $c = 4\sqrt{5 + 2\sqrt{5}}$; no ambiguity. 9. Impossible. #### XIII. d. PAGE 136. 1. 72° , 72° , 36° ; each side = $\sqrt{5+1}$. $A = 60^{\circ}$, $a = 9 - 3\sqrt{3}$, $b = 3(\sqrt{6 - \sqrt{2}})$, $c = 3\sqrt{2}$. 2. $A = 105^{\circ}$, $B = 15^{\circ}$, $C = 60^{\circ}$. 4. $B = 54^{\circ}$, 126° ; $C = 108^{\circ}$, 36° . 3. 5. $C = 60^{\circ}$, 120° ; $A = 90^{\circ}$, 30° ; $a = 100 \sqrt{3}$. No, for $C = 90^{\circ}$. 6. 18°, 126°, 8. $A = 90^{\circ}$, $B = 30^{\circ}$, $C = 60^{\circ}$; $2c = a \sqrt{3}$. #### MISCELLANEOUS EXAMPLES. D. PAGE 138. - 2. 43. 3. ∞ , 1. 4. -1. 6. a=2, $B=30^{\circ}$, $C=105^{\circ}$. - 9. $A = 30^{\circ}$, $B = 75^{\circ}$, $C = 75^{\circ}$. ### XIV. a. PAGE 145. 1. 10, 8, $$-\frac{3}{2}$$, $\frac{2}{3}$, $\frac{1}{2}$, -1 2. $\frac{4}{3}$, $\frac{5}{4}$, $-\frac{1}{2}$, $\frac{7}{4}$. - 3. 2401, ·5, $\frac{10000}{9}$, 1, $\frac{5}{4}$, 1000, 10000. - 4. 5, 3, 3, 4, 0. 5. 0, 2, $\overline{2}$, 0, 4, 3, $\overline{1}$. - 6. 1·8091488, 6·8091488, 4·8091488. 7. 3·25, 325, ·000325. - 8. 2·8853613. 9. 3·3714373. 10. 1·5475286. 11. 1·9163822. 12. 1·4419030. 13. 2·380134. - 11. 1 9165822, 12. 1 4419050, 13. 2 5500154 14. 1 6989700, 15. 1 8125919. 16. 0501716. - 17. $\log 2 = 3010300$. 18. $1 \log 2 = 6989700$. 19. 1.320469. - **20.** ·0260315. **21.** ·2898431. **22.** 7·2621538. - 23. 7; 4. 24. 2058. #### XIV. b. PAGE 149. - **1.** 9·076226, **2.** 3·01824, **3.** 2467·266, - 4. 2·23. 5. 3·54. 6. 1·72. 7. 32, 79. 8. 22·2398. 9. 3·32. 10. 5·77. 11. 2·05. - 12. $x = 2 \log 2 = 60206$, $y = -2 \log 5 = -1.39794$. - 13. $x = \frac{\log 3}{\log 3 \log 2} = 2.71; \ y = \frac{\log 2}{\log 3 \log 2} = x 1 = 1.71.$ - **14.** $3(b-a-c+2), \frac{1}{2}(2a-3c+6).$ - **15.** b+c=2, $\frac{1}{6}(3a+2b+3c-5)$. # MISCELLANEOUS EXAMPLES. E, PAGE 150. 3. $b = \sqrt{3} - 1$, $A = 135^{\circ}$, $C = 30^{\circ}$. 8. $A = 105^{\circ}$, $B = 45^{\circ}$. # XV. a. PAGE 155. - 1. 6·6947486. 2. ·5404924. 3. 6·4547860. 4. 1·7606731. 5. 6·7840083. 6. 55740·83. - 7. 673·5166. 8. ·0106867. 9. ·008287771. - **10**. ·2531925. **11**. 2·031324. **12**. 1·389495. - **13.** 2·424163, **14.** 2·069138. #### XV. b. PAGE 159. 1. ·6164825. 2. ·7928863. 3. 1·2154838. 4. 62°42′31″. 7. 9.8440554. 5. 30° 40′ 23″. 6. 48° 45′ 44″. 9. 9.7530545. 10. 44° 17′ 8″. s. 10·1317778. **11.** 55° 30′ 39″. **12.** 9.6656561. **13.** 10.1912872. # XV. c. Page 161. 2. 84336. 3. 33·27475. 1. 2:36952. 1225:508. 4. ·03803142. 5. 112184. 8. ·580303. 9. 6.84829. 7. 27.90209. 3.288754, 1.236122. 2273.54. 10. 12. ·5095328. 13. 7·29889. 14. -045800373. ·1972945. 16. ·0001706363. 17. *644065. 15. 19. ·3175271. 18. 9.52912. 20. 335859. 21. :4221836. 22. 124272.2. 23. 250.2357. **24.** (1) 36° 45′ 22″; (2) 19° 28′ 16″. 25. 441785. **26.** 68° 25′ 6′. # XV. d. PAGE 163c. 2. 15210. 3. ·0001685. 4. .7573. 1. 49940. -002374. . 0 1 7. .05868. 5. 467.3. 6. 13.60. 8. 11. 1·923. 10. ·07612. 12. 1.444. 9. $2 \cdot 429$. 13. 19.97. 14. ·2008. **15**. 61·86. 16. 2·258. 2.224. 19. 1.784. 17. 18. 4.354. 20. 00008855. 22. 13.81. 21 64.49. 23. ·2510. 24. .0006814. 27. 9.29: 2560, 28. 4.616. 25. ·9811. 26, 16, **29.** x = 1.151, y = 1.353. **32.** (i) 105.5; (ii) 849.4. 30. 1.874. 31. 11410. **33**. 316·9. 34. 5.044. 38·53. 36. 4·015. 37. 2·007 cm. 38. 45·16 cm. 35. **39**. ·2905. ### XV. e. PAGE 163₁₁. 1. .4944. 7931. 3. ·9651. 4. 1.5171. 7. 18° 13′. 8. 79°44'. 5. 1.0932. 6. 1·2153. 9. 35° 32′. 10. 51° 35′. 11. 33° 8′. 12. 48° 12′. 13. 9·8439. 14. 10·2823. 15. 9·4841. 16. ·3161. 17. ·3033. 18. 4·159. 19. ·6992. 20. 44° 19′. 21. 459·5. 22. (i) 77·25; (ii) 32·00. 23. 33° 33′. **24.** 19·92. **25.** 166·0. #### XVI. a. PAGE 166. 6. $\frac{1}{2}$. 7. $\frac{3}{2}$. ### XVI. b. PAGE 169. - 1. 113° 34′ 41″. 2. 49° 28′ 26″. 3. 55° 46′ 16″. - 8. $A = 67^{\circ} 22' 49''$, $B = 53^{\circ} 7' 48''$, $C = 59^{\circ} 29' 23''$. - 9. $A = 46^{\circ} 34' 3''$, $B = 104^{\circ} 28' 39''$, $C = 28^{\circ} 57' 18''$. #### XVI. c. PAGE 173. - 1. $A = 79^{\circ} 6' 24''$, $B = 40^{\circ} 53' 36''$. 2. $A = 6^{\circ} 1' 54''$, $C = 108^{\circ} 58' 6''$. - 3. $A = 24^{\circ} 10' 59''$, $B = 95^{\circ} 49' 1''$. 4. $B = 78^{\circ} 48' 52''$, $C = 56^{\circ} 41' 8''$. - 5. $A = 27^{\circ} 38' 45''$, $C = 117^{\circ} 38' 45''$. 6. $82^{\circ} 57' 15''$, $36^{\circ} 32' 45''$. - 7. $A = 74^{\circ} 32' 44''$, $C = 48^{\circ} 59' 16''$. - 8. $B = 100^{\circ} 47' 1'', C = 14^{\circ} 12' 59''$ - 9. $A = 136^{\circ} 35' 21.8''$, $B = 13^{\circ} 14' 33.2''$. # XVI. d. PAGE 174. - **1.** 89·646162. **2.** 255·3864. **3.** 92·788. **4.** b=185, c=192. - 5. 321.0793. 6. a = 765.4321, c = 1035.43. - 7. b = 767.792, c = 1263.58. # XVI. e. PAGE 176. 1. 32° 25′ 35″. 2. 41° 41′ 28″ or 138° 18′ 32″. 3. $A = 100^{\circ} 34'$, $B = 34^{\circ} 26'$. 4. $51^{\circ} 18' 21''$ or $128^{\circ} 41' 39''$, - 5. $A = 28^{\circ} 20' 49''$, $C = 39^{\circ} 35' 11''$. 6. $A = 81^{\circ} 45' 2''$, or $23^{\circ} 2' 58''$. - 7. (1) Not ambiguous, for $C = 90^{\circ}$; - (2) ambiguous, b = 60.3893 ft.; - (3) not ambiguous. #### XVI. f. PAGE 180. - 1. $A = 58^{\circ} 24' 43''$, $B = 48^{\circ} 11' 23''$, $C = 73^{\circ} 23' 54''$. - 2. 112° 12′ 54″, 45° 53′ 33″, 21° 53′ 33″. 3. 75° 48′ 54″. - 4. 4227.4815. 5. $B=108^{\circ}12'26''$, $C=49^{\circ}27'34''$, - 6. $A = 105^{\circ} 38' 57''$, $B = 15^{\circ} 38' 57''$. 7. 17.1 or 3.68. - 8. 108°26′6″, 53°7′48″, 18°26′6″. 9. 126°22′; 96°27′, or 19°3′. - 10. $B = 80^{\circ}46'26.5''$, $C = 63^{\circ}48'33.5''$. 11. $70^{\circ}0'.56''$, or $109^{\circ}.59'.4''$. - **12.** 4.0249. **13.** 41° 45′ 14″. - **14.** $A = 42^{\circ} 0' 14''$, $B = 55^{\circ} 56' 46''$, $C = 82^{\circ} 3'$. - **15.** $41^{\circ}24'35''$. **16.** $A = 60^{\circ}5'34''$, $C = 29^{\circ}54'26''$. - **17.** 889·2554 ft. **18.** 72° 12′ 59″, 47° 47′ 1″. - **19.** 44.4878 ft. **20.** $A = 102^{\circ} 56' 38''$, $B = 42^{\circ} 3' 22''$. - **21.** $B = 99^{\circ} 54' 23''$, $C = 32^{\circ} 50' 37''$, a = 18.7254. **22.** $72^{\circ} 26' 26''$. - 23. $A = 27^{\circ} 29' 56''$, $B = 98^{\circ} 55'$, $C = 53^{\circ} 35' 4''$. - **24.** $B = 32^{\circ} 15' 49''$, $C = 44^{\circ} 31' 17''$, a = 1180.525. - **25.** a = 20.9059, c = 33.5917. **26.** a = 2934.124, b = 3232.846. - **27.** $B = 1^{\circ} 1' 23''$, $C = 147^{\circ} 28' 37''$, a = 4389.8. - **28.** $A = 26^{\circ} 24' 23''$, $B = 118^{\circ} 18' 25''$, b = 642.756. - 29. 53° 17′ 55″, or 126° 42′ 5″. - **30.** $A = 31^{\circ} 39' 33''$, $C = 96^{\circ} 1' 27''$, a = 878.753. - **31.** $b = 4028 \cdot 38$, $c = 2831 \cdot 67$. - **32.** $B = 75^{\circ} 53' 29''$, or $104^{\circ} 6' 31''$; $A = 60^{\circ} 54' 19''$, or $32^{\circ} 41' 17''$. - 33. Base = 2.44845 ft., altitude = .713321 ft. - **34.** 90°, nearly. **35.** (1) impossible; (2) ambiguous; (3) 63.996. - **36.** $\theta = 72^{\circ} 31' 53''$, c = 12.8255. **37.** $\theta = 60^{\circ} 13' 52''$, c = 19.523977. ### XVI. g. PAGE 183D. - 2. 90°. 1. 108° 38′. 3. 41°8′. 4. $A = 30^{\circ} 50'$, $B = 131^{\circ} 15'$, $C = 17^{\circ} 55'$. - 5. $A = 28^{\circ} 24'$, $B = 44^{\circ} 30'$, $C = 107^{\circ} 6'$. - 6. $A = 27^{\circ} 40'$, $B = 95^{\circ} 27'$, $C = 56^{\circ} 53'$. - 7. 116° 28′. 8. 25° 31′. - 9. $A = 38^{\circ} 10'$, $B = 60^{\circ}$, $C = 81^{\circ} 50'$. - 10. $A = 53^{\circ} 8'$, $B = 59^{\circ} 30'$, $C
= 67^{\circ} 22'$. - 11. $B = 51^{\circ} 35'$, $C = 20^{\circ} 59'$. 12. $A = 23^{\circ} 3'$, $B = 33^{\circ} 15'$. - $A = 1^{\circ} 3', C = 118^{\circ} 27'.$ 13. - 10. $A = 97^{\circ} 15.5'$, $B = 37^{\circ} 37.5'$, c = 19.49. - **15.** $B = 129^{\circ} 29'$, $C = 13^{\circ} 31'$, $a = 102 \cdot 6$. - 16. $B = 49^{\circ} 29'$, $C = 70^{\circ} 31'$. - 16. $B=49^{\circ}29', \ C=70^{\circ}31'.$ 17. $A=71^{\circ}30', \ B=26^{\circ}16'.$ 18. $A=97^{\circ}31\cdot5', \ B=29^{\circ}41\cdot5'.$ 19. $B=132^{\circ}20', \ C=29^{\circ}24'.$ - 20. $A = 24^{\circ} 15'$, $B = 34^{\circ} 7'$, c = 36.49. - 23. 4.200. 21. 68.41. 22. 65.42. 24. 1215. - 79.75. **26.** a = 4.328 in., b = 5.499 in. **27.** 130.3. 25. - 28. $a = 214 \cdot 2, b = 223 \cdot 4,$ - 29. b = 3.841. c = 4.762. - 30. a = 26.71, c = 99.68. - 31. 57° 18′. - 32. 44° 17′ or 135° 43′. - 33. $A = 36^{\circ} 18'$. c = 29.18. - 34. $B = 74^{\circ} 36'$ or $105^{\circ} 24'$, $C = 65^{\circ} 24'$ or $34^{\circ} 36'$, c = 133.2 or 82.22. 35. $B = 24^{\circ} 53'$ or $155^{\circ} 7'$, $C = 134^{\circ} 26'$ or $4^{\circ} 12'$, c = 232.5 or 23.84. - 36. $A = 31^{\circ} 40'$, $C = 96^{\circ} 2'$, a = 878.8. - 37. $A = 26^{\circ} 12'$, $B = 118^{\circ} 48'$, b = 850.7. - $A = 102^{\circ} 57', B = 42^{\circ} 3'.$ 39. $41^{\circ} 45'.$ 38. - **40.** $B = 75^{\circ} 12'$ or $104^{\circ} 7'$, $A = 60^{\circ} 56'$ or $32^{\circ} 40'$. - **41.** $A = 42^{\circ}$, $B = 55^{\circ} 58'$, $C = 82^{\circ} 2'$. - **42.** $41^{\circ} 24'$. **43.** $B = 99^{\circ} 54 \cdot 5'$, $C = 32^{\circ} 50 \cdot 5'$, $a = 18 \cdot 72$. - **44.** $B=1^{\circ}1'$, $C=147^{\circ}29'$, u=4391. **45.** $53^{\circ}17'$ or $126^{\circ}43'$. - 46. 12.81. **47.** 19·53. #### XVII. a. PAGE 185. - 1. 146:4 ft. 2. 880 $\sqrt{3} = 1524$ ft. 5. ab/(a-b) ft. - 6. $\frac{1}{2}\sqrt{6} \approx 816$ miles. 7. $10(\sqrt{10} + \sqrt{2}) = 45.76$ ft. 9. 1 or $$\frac{1}{3}$$. 9. 1 or $$\frac{1}{3}$$. 10. 9? ft. 12. 48 $\sqrt{6} = 117.6$ ft. 14. $$750\sqrt{6} = 1837 \text{ ft.}$$ 15. $2640(3+\sqrt{3}) = 12492 \text{ ft.}$ #### XVII. b. PAGE 190. 12. $$\sqrt{500-200}\sqrt{3}=12.4$$ ft. # XVII. c. PAGE 195. 1. 1060.5 ft. 2. $$\frac{500}{3}$$ \frac{1}{6} = 408 ft. 3. $120 \ 6 = 294 \text{ ft.}$ 10. Height = $40 \ /6 = 98 \text{ ft.}$; distance = $40 \ (\ /14 + \ /2) = 206 \text{ ft.}$ 11. $50 \sqrt{120 + 30} \sqrt{6} = 696 \text{ yds.}$ #### XVII. d. PAGE 197. - 1. 5 miles nearly. 2. Height = 19.4 yds.; distance = 102.9 yds. - 3. 200·1 ft. - 4. Height = 394.4 ft.; distance = 406.4 ft. - 5. Height = 916.8 ft.; distance = .9848 mile. - 6. Height = 45.91 ft.; distance = 99.17 ft. - 7. 11.55 or 25.97 miles per hour. - 8. Height=159.2 ft.; distance=215.5 ft. # XVIII. a. PAGE 206. - 9000 sq. ft. 1. - 2. 15390. - $24, \frac{117}{5}, \frac{936}{25}.$ - 5. 225 sq. ft. 6. 672 sq. ft. 36 yds. 7. - 8. r=4, R=81. 9. 12, 6, 28. - 10, 12, 16, 20. 1. 26.46 sq. ft. 216.23 sq. it. 7. 57.232 ft. 1. 15, 21. XVIII. b. PAGE 2103775 9.585 yds., 7.18875 sq. yds. 5. 128·352 in. 6. 101.78 ft. 8. 63.09 sq. ft. XVIII. c. PAGE 218. 17. $$\frac{\pi}{3} + \left(-1\right)^n \frac{1}{2^n} \left(A - \frac{\pi}{3}\right),$$ $$\frac{\pi}{3} + (-1)^n \frac{1}{2^n} \left(B - \frac{\pi}{3}\right),$$ $$\frac{\pi}{3} + (-1)^n \frac{1}{2^n} \left(C - \frac{\pi}{3}\right).$$ XVIII. d. PAGE 223. 4. Diagonals 65, 63; area 1764. 5. $2\sqrt{77}+6\sqrt{11}$. XVIII. e. PAGE 225. 5. $\sqrt{\frac{x}{y} + \frac{y}{z} + \frac{z}{x}}$. 13. 20, 21, 29. 2. 7071 sq. yds. ### MISCELLANEOUS EXAMPLES. F. Page 228. - Expression = $\cot A + \cot B + \cot C$. - $B = 45^{\circ}$, 135° ; $C = 105^{\circ}$, 15° ; $c = \sqrt{6 + \sqrt{2}}$, $\sqrt{6 \sqrt{2}}$. - 6. 126. 7. 68.3 yds., 35.35 yds. - 11. $C = 45^{\circ}$, 135° ; $A = 105^{\circ}$, 15° ; $a = 2\sqrt{3}$, $4\sqrt{3} 6$, - 12. 40 miles; 10 $\sqrt{2} = \sqrt{2}$ miles, - (1) $90^{\circ} \frac{A}{2}$, $90^{\circ} \frac{B}{2}$, $90^{\circ} \frac{C}{2}$; (2) $180^{\circ} - 2.1$, $180^{\circ} - 2B$, $180^{\circ} - 2C$. - Expression = $\sin^2(\alpha \beta)$. 28. 21.3 miles per hour, 25. - 29. 1 hr. 30'; 2 hrs. 16'. ### XIX. a. PAGE 235. 1. $$n\pi + (-1)^n \frac{\pi}{6}$$. 2. $$n\pi + (-1)^n \frac{\pi}{4}$$. 3. $2n\pi \pm \frac{\pi}{3}$. 3. $$2n\pi \pm \frac{\pi}{3}$$ 4. $$n\pi + \frac{\pi}{3}$$. 5. $$n\pi - \frac{\pi}{6}$$. 6. $$2n\pi \pm \frac{3\pi}{4}$$. 7. $$n\pi \pm \frac{\pi}{4}$$. 8. $$n\pi \pm \frac{\pi}{6}$$. 9. $$n\pi \pm \frac{\pi}{3}$$. 10. $$2u\pi \pm a$$. 11. $$n\pi \pm a$$. 12. $$n\pi \pm a$$. 13. $$n\pi$$. 14. $$\frac{n\pi}{2} + (-1)^n a$$ **14.** $$\frac{n\pi}{3} + (-1)^n a$$. **15.** $2n\pi$, or $\frac{2n\pi}{5}$. 16. $$\frac{n\pi}{3}$$, or $n\pi \pm \frac{\pi}{6}$. **16.** $$\frac{n\pi}{3}$$, or $n\pi \pm \frac{\pi}{6}$. **17.** $\frac{n\pi}{4}$, or $\frac{n\pi}{3} + (-1)^n \frac{\pi}{18}$. 18. $$\frac{(2n+1)\pi}{2}$$, or $2n\pi$, or $\frac{(2n+1)\pi}{5}$. 19. $$\frac{(2n+1)\pi}{2}$$, or $\frac{(2n+1)\pi}{4}$, or $\frac{(2n+1)\pi}{8}$. 20. $$n\pi$$, or $\frac{(2n+1)\pi}{14}$. 21. $$\frac{n\pi}{6}$$, or $\frac{n\pi}{9}$. 22. $$\frac{(2n+1)\pi}{6}$$, or $n\pi \pm \frac{\pi}{8}$ 22. $$\frac{(2n+1)\pi}{6}$$, or $n\pi \pm \frac{\pi}{8}$. 23. $\frac{(2n+1)\pi}{8}$, or $\frac{n\pi}{3} + (-1)^n \frac{\pi}{9}$. 27. $\frac{n\pi}{2} + \frac{\pi}{8}$. **24.** $$(2n+1) \pi$$, or $2n\pi \pm \frac{\pi}{3}$. **25.** $2n\pi$, or $2n\pi \pm \frac{2\pi}{3}$. 25. $$2n\pi$$, or $2n\pi \pm \frac{2\pi}{3}$. 26. $$n\pi + (-1)^{\frac{\pi}{6}} \frac{\pi}{6}$$, or $n\pi + (-1)^{\frac{3\pi}{2}}$. 28. $2n\pi + \frac{2\pi}{3}$. 29. $$2n\pi - \frac{\pi}{4}$$. # XIX. b. PAGE 237. 1. $$\frac{(2u+1)\pi}{2(n+a)}$$. 2 1. $$\frac{(2u+1)\pi}{2(p+q)}$$. 2. $\frac{(4k+1)\pi}{2(u-m)}$, or $\frac{(4k-1)\pi}{2(u+m)}$. 3. $2n\pi$, or $2u\pi - \frac{2\pi}{3}$. . $$2n\pi$$, or $2u\pi - \frac{2\pi}{3}$ 5. $$2n\pi + \frac{\pi}{2}$$, or $2n\pi + \frac{\pi}{6}$. 6. $$2n\pi + \frac{5\pi}{12}$$, or $2n\pi - \frac{\pi}{12}$. 7. $$2n\pi + \frac{\pi}{12}$$, or $2n\pi - \frac{7\pi}{12}$. 8. $$2u\pi + \frac{5\pi}{4}$$, or $2n\pi - \frac{3\pi}{4}$. 9. $$2n\pi + \frac{\pi}{3}$$, or $(2n+1)\pi$. 16. $$\frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$$. 11. $$\frac{(2n+1)\pi}{4}$$, or $n\pi \pm \frac{\pi}{6}$. 12. $$n\pi$$, or $n\pi \pm \frac{\pi}{6}$. 13. $$\frac{n\pi}{2}$$. 14. $$n\pi + \frac{\pi}{4}$$, or $2n\pi$, or $2n\pi + \frac{\pi}{2}$. [In some of the following examples, the equations have to be squared, so that extraneous solutions are introduced.] 15. $$\frac{2n\pi}{3} + \frac{\pi}{4}$$, or $2n\pi + \frac{\pi}{4}$. 16. $$n\pi - \frac{\pi}{4}$$, or $\frac{n\pi}{2} + (-1)^n \frac{\pi}{12}$. 17. $$\frac{(2n+1)\pi}{10}$$, or $\frac{(2n+1)\pi}{2}$. 18. $$\frac{(2n+1)\pi}{2}$$, or $n\pi \pm \frac{\pi}{3}$. 19. $$n\pi + \frac{\pi}{4}$$, or $n\pi + \frac{\pi}{6}$. 20. $$\frac{n\pi}{2} + (-1)^{n+1} \frac{\pi}{12}$$, or $\frac{n\pi}{2}$. **21.** $$\theta = n\pi \pm \frac{\pi}{4}, \ \phi = n\pi \pm \frac{\pi}{6}.$$ 22. $$\theta = n\pi \pm \frac{\pi}{6}, \ \phi = n\pi \pm \frac{\pi}{3}.$$ **23.** $$\theta = n\pi \pm \frac{\pi}{4}, \ \phi = n\pi \pm \frac{\pi}{3}.$$ ### XIX. d. PAGE 244. 1. $$\pm \frac{1}{\sqrt{2}}$$. 2. ± 1 . 4. $$\frac{-3 \pm \sqrt{17}}{4}$$. 5. 1, or $$\frac{1}{2}$$. 5. 1, or $$\frac{1}{2}$$. 6. 0, or $\pm \frac{1}{2}$. 7. $\pm \frac{1}{\sqrt{2}}$. 7. $$\pm \frac{1}{\sqrt{2}}$$ 8. $$\pm \frac{25}{24}$$. 9. $$\frac{1}{2}$$ 10. $$\frac{a-b}{1+ab}$$. 11. $\frac{b-a}{1+ab}$. 12. $\sqrt{3}$. $$b-a$$ 13. $$x = ac - bd$$, $y = bc + ad$. 14. $$\pm 1$$, or $\pm (1 \pm \sqrt{2})$. 15. $$n\pi + \frac{\pi}{4}$$. 19. $$x=1, y=2; x=2, y=7.$$ #### MISCELLANEOUS EXAMPLES. G. PAGE 246. 2. (1) $$\frac{(2n+1)\pi}{2}$$, $2n\pi \pm \frac{\pi}{3}$; (2) $2n\pi \pm \frac{\pi}{3}$. 2. $$\sin \frac{A}{2} = \frac{5}{13}$$, $\cos \frac{A}{2} = -\frac{12}{13}$. 3. $\sin \frac{A}{2} = -\frac{15}{17}$, $\cos \frac{A}{2} = \frac{8}{17}$. 4. $$2 \sin \frac{A}{2} = -\sqrt{1 + \sin A} + \sqrt{1 - \sin A}$$; $2 \cos \frac{A}{2} = -\sqrt{1 + \sin A} - \sqrt{1 - \sin A}$. 5. $$2\sin\frac{A}{2} = -\sqrt{1+\sin A} - \sqrt{1-\sin A}$$; $2\cos\frac{A}{2} = -\sqrt{1+\sin A} + \sqrt{1-\sin A}$. 6. $$2\sin\frac{A}{2} = +\sqrt{1+\sin A} + \sqrt{1-\sin A};$$ $2\cos\frac{A}{2} = +\sqrt{1+\sin A} - \sqrt{1-\sin A}.$ 7. $$\sin \frac{A}{2} = \frac{4}{5}$$, $\cos \frac{A}{2} = \frac{3}{5}$. 8. $\sin \frac{A}{2} = \frac{8}{17}$, $\cos \frac{A}{2} = -\frac{15}{17}$. 9. (1) $$2n\pi - \frac{\pi}{4}$$ and $2n\pi + \frac{\pi}{4}$; (2) $2n\pi + \frac{5\pi}{4}$ and $2n\pi + \frac{7\pi}{4}$; (3) $$2n\pi + \frac{3\pi}{4}$$ and $2n\pi + \frac{5\pi}{4}$. 10. No; $$2 \sin \frac{A}{2} = \sqrt{1 + \sin A} + \sqrt{1 - \sin A}$$. 14. (1) = $$\sqrt{2} \cos \left(\theta - \frac{\pi}{4}\right)$$; (2) = $2 \sin \left(\theta - \frac{\pi}{3}\right)$. 15. (1) = $$-\sec 2\theta$$; (2) = $\tan^2 \frac{\theta}{2}$. #### XX. b. PAGE 260. 3. $$\frac{1}{5}$$. $$4. - \frac{1}{3}$$. ### XXI. a. PAGE 267. 1. 1440 yards. 2. 342⁶ yards. 3. 22 yards. 6' 34". 4. 5. 4'35''. 6. 11 ft. 11 in. 210 yards. 8. 9'33". 10. 50 ft. 648000. 14. m-n. 11. (1) $\frac{\pi}{10800}$; (2) $\frac{\pi}{648000}$. 12. πr^2 . 13. $\frac{1}{2}$. 15. $\frac{1}{2} - \frac{\sqrt{3}}{200} = .491$. 16. $\frac{1}{2} + \frac{11\sqrt{3}}{7200} = 503$. 17. $\frac{21}{3} = 39.7'$. #### XXI. b. Page 271. 1. 12 miles. 2. 150 ft. 3. 15 miles. 4. 80 ft. 8 in. 204 ft. 2 in. 6. 54'33". 7. 104 ft. 2 in. 10560 ft. 9. 610 ft., $\frac{5}{2}\sqrt{110}$ minutes = 26' 13". 11. 8. 12. -1. 13. (1) $\cos \alpha$; (2) $-\sin \alpha$. 14. 45° 54′ 33″, 44° 5′ 27″. # MISCELLANEOUS EXAMPLES. H. PAGE 283. 3. 18° 26′ 6″. 6. 35 miles or 13 miles per hour. # XXIII. a. PAGE 291. 2. $\sin \frac{n\beta}{2} \cos \left(\alpha - \frac{n-1}{2}\beta\right) / \sin \frac{\beta}{2}$. 3. $-\cos\left(\alpha + \frac{\pi}{2n}\right) / \sin\frac{\pi}{2n}$. 4.
$\sin\frac{n\pi}{2k}\cos\frac{(n+1)\pi}{2k} / \sin\frac{\pi}{2k}$. 5. $\frac{1}{2}$. 6. $-\frac{1}{2}$. 7. $\cot \frac{\pi}{2\pi}$. 8. $-\cos \frac{\pi}{2\pi}$. 9. $\sin na$. 10. $\sin \frac{n(\theta+\pi)}{2} \sin \left(\frac{n+1}{2}\theta + \frac{n-1}{2}\pi\right) / \sin \frac{\theta+\pi}{2}$. 11. $\sin \frac{n(\pi-\beta)}{2} \cos \left\{\alpha + \frac{(n-1)(\pi-\beta)}{2}\right\} / \sin \frac{\pi-\beta}{2}$. $\sin \frac{n(\pi-2\beta)}{4}\cos \left\{\alpha+\frac{(n-1)(\pi-2\beta)}{4}\right\}/\sin \frac{\pi-2\beta}{4}.$ $\frac{n\cos\theta}{2} - \frac{\sin n\theta\cos(n+2)\theta}{2\sin\theta}.$ 13. $\frac{\sin 2n\alpha \sin 2(n+1)\alpha}{2\sin 2\alpha} - \frac{n\sin 2\alpha}{2}.$ $\csc \alpha \{ \tan (n+1) \alpha - \tan \alpha \}.$ $\csc 2\theta \left\{\cot \theta - \cot (2n+1)\theta\right\}.$ 17. $\tan \alpha - \tan \frac{\alpha}{2n}$. 16. 18. $\frac{1}{2}(\csc \alpha - \csc \beta^n \alpha)$. 19. $\frac{1}{2}(\tan \beta^n \alpha - \tan \alpha)$. ### XXIII. b. PAGE 294. 1. $$\frac{n}{2} + \frac{\sin 4n\theta}{4\sin 2\theta}$$. 2. $\frac{n}{2}$. 3. $\frac{n}{2}$. 2. $$\frac{n}{2}$$ 3. $$\frac{n}{2}$$ 4. $$\frac{3 \sin \frac{n\theta}{2} \sin \frac{(n+1)\theta}{2}}{4 \sin \frac{\theta}{2}} - \frac{\sin \frac{3n\theta}{2} \sin \frac{3(n+1)\theta}{2}}{4 \sin \frac{3\theta}{2}}.$$ - 5. 0. 6. 0. 7. $\cot \theta 2^n \cot 2^n \theta$. - 8. $\frac{1}{2}\csc a \{\tan (n+1) a \tan a\}$ 9. $\frac{\sin 2\theta}{2} \frac{\sin 2^{n+1}\theta}{2^{n+1}}$ - 10. $\sin^2\theta 2^n \sin^2\frac{\theta}{2^n}$. - 11. $\tan^{-1}x \tan^{-1}\frac{x}{x+1}$. - 12. $\tan^{-1}(n+1) \frac{\pi}{4}$. - 13. $\tan^{-1}\{1+n(n+1)\}-\frac{\pi}{4}$. 14. $\tan^{-1} n (n+1)$. ### XXIV. a. PAGE 301. 2. $$x = a \cos \frac{\alpha + \beta}{2} / \cos \frac{\alpha - \beta}{2}$$, $y = b \sin \frac{\alpha + \beta}{2} / \cos \frac{\alpha - \beta}{2}$. 3. $x = a (\cos \alpha + \sin \alpha), y = b (\sin \alpha - \cos \alpha).$ 13. $$4\sin\frac{\alpha+\beta+\gamma}{2}\sin\frac{\beta+\gamma-\alpha}{2}\sin\frac{\gamma+\alpha-\beta}{2}\sin\frac{\alpha+\beta-\gamma}{2}$$. 14. $$4\sin\frac{\alpha+\beta+\gamma}{2}\sin\frac{\alpha+\beta-\gamma}{2}\cos\frac{\beta+\gamma-\alpha}{2}\cos\frac{\gamma+\alpha-\beta}{2}$$. 15. $$-4\cos\left(\frac{\alpha+\beta+\gamma}{2}-\frac{\pi}{4}\right) \operatorname{H}\cos\left(\frac{\beta+\gamma-\alpha}{2}+\frac{\pi}{4}\right)$$. **22.** (1) $$(a^2+b^2) x^2-2bcx+c^2-a^2=0$$; (2) $$(a^2+b^2)^2 x^2 - 2(a^2-b^2)(2c^2-a^2-b^2)x + a^4 + b^4 + 4c^4 - 2a^2b^2 = 4a^2c^2 - 4b^2c^2 = 0.$$ [Use $$\cos 2\alpha \cos 2\beta = \cos^2(\alpha - \beta) - \sin^2(\alpha + \beta)$$.] #### XXV. a. PAGE 318. 1. $$2\sqrt{pq}$$. 2. 4. 3. 24. 4. 2. 7. $\sqrt{2}$. 8. 2. 9. $$\sqrt{a^2 - 2ab \sin \alpha + b^2}$$ 9. $\sqrt{a^2 - 2ab \sin \alpha + b^2}$. 10. $\sqrt{p^2 + 2pq \sin \alpha + q^2}$. 11. Maximum = $$2 \sin \frac{\sigma}{2}$$. 12. Maximum = $\sin^2 \frac{\sigma}{2}$. 13. Minimum = $$2 \tan \frac{\sigma}{2}$$. 14. Minimum = $2 \csc \frac{\sigma}{2}$. 15. Maximum = $$\frac{1}{8}$$. 16. Minimum = $\sqrt{3}$. 17. Minimum $$=\frac{3}{4}$$. 18. Minimum = 6. 20. Minimum = 1. 21. $$\frac{1}{2}(a+c) \pm \frac{1}{2}\sqrt{b^2+(a-c)^2}$$. 25. $\frac{5}{2}$. **26.** $$k^2/(a^2+b^2+c^2)$$; $k^2/(a+b+c)$. # XXV. b. PAGE 324. 1. $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$$. 1. $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 2$. 2. $x^2 + y^2 = a^2 + b^2$. 3. $b^2 = a^2 (2 - a^2)$. 4. $$y(x^2-1)=2$$ **4.** $y(x^2-1)=2$. **5.** $(a^2-b^2)^2=16ab$. **6.** $x^{\frac{4}{3}}y^{\frac{2}{3}}-x^{\frac{2}{3}}y^{\frac{4}{3}}=1$. 7. $$a^2b^2(a^2+b^2)=1$$. 8. $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$. 9. $x^{\frac{4}{5}}y^{\frac{6}{5}}-x^{\frac{6}{5}}y^{\frac{4}{5}}=a^2$. 10. $$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$. 10. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 12. $x^{\frac{1}{2}} + y^{\frac{1}{2}} = 2$. 13. $(x+y)^{\frac{2}{3}} + (x-y)^{\frac{2}{3}} = 2$. $$16. \quad a^2 + b^2 = 2c^2.$$ **16.** $a^2 + b^2 = 2c^2$. **20.** $(x+y)^{\frac{2}{3}} + (x-y)^{\frac{2}{3}} = 2a^{\frac{2}{3}}$. **21.** $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$. 22. $$\frac{x^2}{a} + \frac{y^2}{b} = a + b$$, or $\{a(y^2 - b^2) - b(x^2 - a^2)\}^2 = -4abx^2y^2$. **24.** $$xy = (y - x) \tan \alpha$$. **25.** $a^2 + b^2 - 2 \cos \alpha = 2$. **26.** $a + b = 2ab$. 25. $$a^2 + b^2 - 2\cos\alpha = 2$$. **29.** $$(a+b)(m+n) = 2mn$$. **30.** $x^2 + y^2 = 16a^2$. $$30. \quad x^2 + y^2 = 16a^2$$ 31. $$(a-b) \{c^2 - (a+b)^2\} = 4abcm$$. #### XXV. c. Page 334. 1. $$2\cos 20^{\circ}$$, $-2\cos 40^{\circ}$, $-2\cos 80^{\circ}$. 2. $$2 \sin 10^{\circ}$$, $2 \sin 50^{\circ}$, $-2 \sin 70^{\circ}$. 3. $$2\cos 10^{\circ}$$, $-2\cos 50^{\circ}$, $-2\cos 70^{\circ}$. 4. $$\sin 15^{\circ}$$, $\sin 45^{\circ}$, $-\sin 75^{\circ}$. 5. $$\frac{1}{a}\sin A$$, $\frac{1}{a}\sin (60^{\circ} - A)$, $-\frac{1}{a}\sin (60^{\circ} + A)$. 6. $$2a \cos A$$, $2a \cos (120^{\circ} \pm A)$. 16. (1) $$8x^3 - 4x^2 - 4x + 1 = 0$$; (2) $64y^3 - 80y^2 + 24y - 1 = 0$. 17. $$64y^3 - 112y^2 + 56y - 7 = 0$$. 18. (1) $$16x^4 + 8x^3 - 12x^2 - 4x + 1 = 0$$; (2) $16x^4 - 8x^3 - 12x^2 + 4x + 1 = 0$. 19. $$256y^4 - 448y^3 + 240y^2 - 40y + 1 = 0$$. 20. $$t^8 - 36t^6 + 126t^4 - 84t^2 + 9 = 0$$. #### MISCELLANEOUS EXAMPLES. K. PAGE 337. 2. $$\frac{4\pi}{15}$$, $\frac{\pi}{3}$, $\frac{2\pi}{5}$. 4. $\frac{3}{2}$. 5. $$15\sqrt{3} = 25.98$$ ft. 15 $\sqrt{3} = 25.98$ ft. 6. 790 ft. 7. 5.236 ft. 8. $\frac{8}{17}$, $\frac{15}{17}$. 9. 30°, 60°. 10. $\frac{125}{78}$. 12. $\frac{1 - \tan^8 A}{\tan^4 A}$. 25. 1; tan A. 22. $$.09375$$; 16.7552 . 24. $\sqrt{2}:1$. 27. $-\frac{5}{31}$. 28. 45° or 60° . 29. 15° 12′ 45″. 34. $$\sin = \frac{24}{25}$$, $\cos = \frac{7}{25}$, $\tan = \frac{24}{7}$. 37. $$B=45^{\circ}$$, $b=25\sqrt{2}$, $p=25$. 39. $$-\frac{\sqrt{3}}{2}$$, -2 , $\frac{1}{\sqrt{3}}$. **46.** $$\pm \cdot 8$$. **47.** $\frac{16}{65}$. **48.** $$\tan 2A$$. **49.** $\pm \frac{1}{\sqrt{3}}$. **50.** $880 (3 + \sqrt{3}) = 4164.16 \text{ yds}$. **51.** (1) 0; (2) -2. **53.** $$\frac{a^2-b^2}{a^2+b^2}$$. **55.** $-\sqrt{3}$, $-\frac{1}{2}$, $\frac{1}{\sqrt{3}}$. 56. $$6_{\overline{11}}^{4}$$ °. 57. $-\frac{15}{352}$. 59. (1) cot C ; (2) 2. 60. $$50\sqrt{6}$$ ft. 66. $50\sqrt{3} = 86.6$ yds. 67. 3.141. 70. $$-1$$. 73. $\frac{1}{2}\sin 2\theta$. 74. $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 4^{\frac{2}{3}}$. 75. $$15\sqrt{3}$$ ft., $15(3+\sqrt{3})$ ft., $60+15\sqrt{3}$ ft. 77. 8·10. 95. $$27^{\circ} 45' 44''$$. 97. $\sin 2A = -\frac{336}{625}$; $\tan \frac{A}{2} = -\frac{1}{7}$. 98. $$2-\sqrt{3}$$. 99. $\overline{2}\cdot60206$, $1\cdot3802113$, $\overline{1}\cdot8239087$. 102. $$45, 53; 58^{\circ}6'33\cdot2''$$. 104. 120° . 106. $\frac{20}{21}$. **107.** $$4 \csc 2\theta$$. **108.** $49^{\circ} 28' 32''$. 110. $$2.30103$$, $\overline{2}.39794$, $.598626$, 9.69897 , 9.849485 . 116. $$\cdot 90309$$, $1 \cdot 10739$, $\overline{8} \cdot 52575$. 117. $\frac{1}{\sqrt{2}}$. 118. $$-\tan\frac{\alpha}{2}\cot\frac{\beta}{2}$$, $\tan\frac{\alpha}{2}\tan\frac{\beta}{2}$. 120. 45 ft.; 58° 12′. **122.** $$1.60206$$, $\bar{1}.562469$. **123.** $34^{\circ}18'1''$, $1^{\circ}41'59''$. 127. $$\pm \frac{2\sqrt{5}}{5}$$. 131. 1.3011928. **137.** ·69897, ·845098, 1·113943. 144. 39° 35′ 11″, 28° 20′ 49″. **146.** 2.0755469, .3853509, 1.9256038. **150.** $$\csc x - \csc 3^n x$$. **152.** 45°, 60°, 120°, 135°. **154.** $$-\frac{56}{33}$$; $\frac{4}{5}$, $\frac{12}{13}$, $-\frac{33}{65}$; $120^{\circ}30'37''$. 161. $$\frac{\text{area of circle}}{\text{area of octagon}} = \frac{1380}{1309}$$. 165. $\frac{c \sin \beta}{\sin (\alpha + \beta)}$, $\frac{c \sin \alpha \sin \beta}{\sin (\alpha + \beta)}$. **166.** $$-4\cos\frac{\alpha}{2}\cos\frac{\beta}{2}\cos\frac{\gamma}{2}$$. **173.** $B=4^{\circ}55'11''$, $C=168^{\circ}27'25''$. 415 ANSWERS. 176. $B = 105^{\circ}$, $C = 45^{\circ}$, $a = \sqrt{2}$. 178. $B = 81^{\circ} 47' 12'' \text{ or } 98^{\circ} 12' 48''; c = 13 \text{ or } 11;$ $C = 68^{\circ} 12' 48'' \text{ or } 51^{\circ} 47' 12''$ 180. 10000 ft. 186. 64° 31′ 58″. 191. 2310 sq. ft.; 55 ft., 66 ft., 70 ft. 193. (1) $n\pi$, $\frac{n\pi}{2} \pm \frac{\pi}{16}$; (2) $n\pi \pm \frac{\pi}{6}$. **197.** 134·19 ft. **204.** 226·87. **206.** $\frac{4}{3}$, $-\frac{3}{8}$. **212.** (1) $(2n+1)\frac{\pi}{3}$, $n\pi+(-1)^n\frac{\pi}{4}$; (2) $n\pi$, $n\pi+\frac{3\pi}{4}$. **214.** 20 ft. **219.** $\frac{1}{4}$ or -8. **222.** 37.27919. 231. $\frac{1800}{176\pi} = 3\frac{1}{4}$ miles nearly. 233. $\pm \frac{7}{23}$. **235.** (1) $\frac{n\pi}{4}$, $\frac{2n\pi}{3} \pm \frac{\pi}{9}$; (2) $n\pi + \frac{\pi}{3}$, $n\pi + \frac{3\pi}{4}$. 246. 205.4. 252. 1224·35 vards. 242. 10°. **256.** 9.65146, 20.5309. **262.** $\alpha + \beta + \gamma = (2n+1)\frac{\pi}{9}$. **264.** $\sqrt{2}$ miles. **266.** $\theta = n\pi$. **275.** $B = 70^{\circ} 0' 57'' \text{ or } 109^{\circ} 59' 3''$: $C = 59^{\circ} 59' 3'' \text{ or } 20^{\circ} 0' 57''$ 277. θ . 279. $\cos(\alpha+\beta+\gamma+\delta)+\cos(\alpha+\beta-\gamma-\delta)+\cos(\alpha+\gamma-\beta-\delta)$ $+\cos(\alpha+\delta-\beta-\gamma)$. **283.** $A = 45^{\circ}$, $B = 112\frac{1}{2}^{\circ}$, $c = \sqrt{2 - \sqrt{2}}$. 281. 4. MESSRS MACMILLAN AND CO.'S PUBLICATIONS. By H. S. HALL, M.A., and S. R. KNIGHT, B.A. SEVENTH EDITION, Revised and Enlarged. ELEMENTARY ALGEBRA FOR SCHOOLS. Globe 8vo. (bound in maroon-coloured cloth), 3s. 6d. With Answers (bound in green-coloured cloth), 4s. 6d. KEY TO NEW EDITION. Crown 8vo. 8s. 6d. ANSWERS TO EXAMPLES IN ELEMENTARY ALGEBRA. Fcap. 8vo. Sewed. 1s. HIGHER ALGEBRA. A Sequel to Elementary Algebra for Schools. Fourth Edition, revised and enlarged. Crown 8vo. 7s. 6d. SCHOOL GUARDIAN—"We have no hesitation in saying that, in our opinion, it is one of the best books that have been published on the subject." KEY. Crown 8vo. 10s. 6d. ALGEBRA FOR BEGINNERS. Globe 8vo. 2s. With Answers. 2s. 6d. GUARDIAN—"It possesses the
systematic arrangement and the lucidity which have gained so much praise for the works previously written by the authors in collaboration." ALGEBRAICAL EXERCISES AND EXAMINA-TION PAPERS. With or without Answers. Third Edition, revised and enlarged. Globe 8vo. 2s. 6d. SCHOOLMASTER—"We can strongly recommend the volume to teachers seek- ing a well-arranged series of tests in algebra." ELEMENTARY TRIGONOMETRY. Globe 8vo. EDUCATIONAL REVIEW—"On the whole it is the best elementary treatise on Trigonometry we have seen." KEY. Crown 8vo. 8s. 6d. ARITHMETICAL EXERCISES AND EXAMINA- TION PAPERS. With an Appendix containing Questions in LOGARITHMS AND MENSURATION. With or without Answers. Third Edition, revised and enlarged. Globe 8vo. CAMBRIDGE REVIEW—"All the mathematical work these gentlemen have given to the public is of genuine worth, and these exercises are no exception to the rule. The addition of the logarithm and mensuration questions adds greatly to the value." ALGEBRAICAL EXAMPLES Supplementary to Hall and Knight's ALGEBRA FOR BEGINNERS and ELE-MENTARY ALGEBRA (Chaps. I.-XXVII.). By H. S. Hall, M.A. With or without Answers. Globe 8vo. 2s. A SHORT INTRODUCTION TO GRAPHICAL ALGEBRA. By H. S. HALL, M.A. Revised Edition. Globe 8vo. 1s. KEY. Crown 8vo. 3s. 6d. EASY GRAPHS. Crown 8vo. 1s. #### MESSRS MACMILLAN AND CO.'S PUBLICATIONS. # By H. S. HALL, M.A., and F. H. STEVENS, M.A. A SCHOOL GEOMETRY, based on the recommendations of the Mathematical Association, and on the recent report of the Cambridge Syndicate on Geometry. Crown 8vo. Parts I. and II.—Part I. Lines and Angles. Rectilineal Figures. Part II. Areas of Rectilineal Figures. Containing the substance of Euclid Book I. Areas of Accessions 1s. 6d. Key. 3s. 6d. Part II. Separately. 1s. Part II. 6d. Part III.—Circles. Containing the substance of Euclid Book III. 1—34, and part of Book IV. 1s. Parts I., II., III. in one volume. 2s. 6d. Part IV.—Squares and Rectangles. Geometrical equivalents of Certain Algebraical Formulæ. Containing the substance of Euclid Book III., and Book III. 35—37. 6d. Book III. 35—37. 6d. Parts III. and IV. in one volume. 1s. 6d. Parts I.—IV. in one volume. 3s. Key. 6s. Part V.—Containing the substance of Euclid Book VI. 1s. 6d. Parts IV. and V. in one volume. 2s. Parts IV.—V. in one volume. 4s. Part VL—Containing the substance of Euclid Book XI. 1—21, together with Theorems relating to the Surfaces and Volumes of the simpler Solid Figures. Parts I.—VI. in one volume. 2s. 6d. Key. 8s. 6d. Key. 8s. 6d. #### LESSONS IN EXPERIMENTAL AND PRACTI-CAL GEOMETRY, Crown 8vo. 1s. 6d. A SCHOOL GEOMETRY, PARTS I. II., AND LESSONS IN EXPERIMENTAL AND PRACTICAL GEO-METRY. In one Volume. 2s. 6d. A TEXT-BOOK OF EUCLID'S ELEMENTS, including Alternative Proofs, together with Additional Theorems and Exercises, classified and arranged. Books I .- VI. XI. and XII. Props. 1 and 3. Globe 8vo. 4s. 6d. Also in parts, separately, as follows:— | Book I 1s. | Books IIIVI | 3s. | |--------------------------------|-----------------------|---------| | Books I. and II 1s. 6d. | Books IVVI | 2s. 6d. | | Books II. and III 2s. | Books V. VI. XI. and | | | Books IIII. 2s. 6d., sewed 2s. | XII. Props. 1 and 3 . | 2s. 6d. | | Books IIV. 3s., sewed 2s. 6d. | Book XI | 1s. | | Books III. and IV. 2s. | | | CAMBRIDGE REVIEW—"The whole is so evidently the work of practical teachers, that we feel sure it must soon displace every other Euclid." JOURNAL OF EDUCATION—"The most complete introduction to Plane Geometry based on Euclid's Elements that we have yet seen." GUARDIAN—"In this excellent text-book for schools Euclid's proofs have been for the most part adhered to, and in the few deviations that have been made, where difficulties usually present themselves to the student, the matter substituted is characterised by clearness and simplicity." THE EXERCISES AND EXAMPLES A KEY TO CONTAINED IN A TEXT-BOOK OF EUCLID'S ELEMENTS. Crown 8vo. BOOKS I.-VI. and XI. 8s. 6d. Books I.-IV. 6s. 6d. Books VI. and XI. 3s. 6d. ELEMENTARY COURSE OF MATHE-MATICS, comprising Arithmetic, Algebra, and Euclid. Globe 8vo. 2s. 6d. AN ELEMENTARY COURSE OF MATHE-MATICS, comprising Arithmetic, Algebra, and Geometry. Globe 8vo. 2s. 6d. -1 N= _= 1 B= N + (11 - 15) 1. [715-1010 H TITTE 14) Vs(s-a)/s-4)(3-c) Eur 1000 cot 1 2 cos A 3002A